We are given:
\[
x + y = 1 \quad \text{(1)}
x^2 + 2y^2 = 2 \quad \text{(2)}
\]
From (1), substitute \(x = 1 - y\) into (2):
\[
(1 - y)^2 + 2y^2 = 2 \Rightarrow 1 - 2y + y^2 + 2y^2 = 2 \Rightarrow 3y^2 - 2y -1 = 0
\]
Solving:
\[
y = \frac{2 \pm \sqrt{(-2)^2 + 4(3)(1)}}{2 \cdot 3} = \frac{2 \pm \sqrt{4 + 12}}{6} = \frac{2 \pm \sqrt{16}}{6} = \frac{2 \pm 4}{6}
\Rightarrow y = 1,\ -\frac{1}{3}
\]
So corresponding points are:
\[
P = (0,1), \quad Q = \left(\frac{4}{3}, -\frac{1}{3} \right)
\]
Now find angle between \( \vec{OP} \) and \( \vec{OQ} \) using:
\[
\tan \theta = \frac{|\vec{OP} \times \vec{OQ}|}{\vec{OP} \cdot \vec{OQ}}
\vec{OP} = (0,1),\ \vec{OQ} = \left( \frac{4}{3}, -\frac{1}{3} \right)
\]
Cross product magnitude:
\[
|\vec{OP} \times \vec{OQ}| = |0 \cdot (-1/3) - 1 \cdot (4/3)| = \frac{4}{3}
\]
Dot product:
\[
0 \cdot (4/3) + 1 \cdot (-1/3) = -1/3
\]
\[
\tan \theta = \left| \frac{4/3}{-1/3} \right| = 4
\]