The given line has slope \(m_1 = -\frac{12}{5}\), so perpendicular tangent must have slope \(m_2 = \frac{5}{12}\)
Equation of line: \(5x - 12y + c = 0\)
Find the value of \(c\) such that the line is tangent to the circle.
Convert circle to standard form:
Complete the square:
\[
x^2 + 2x + y^2 - 12y = 132 \Rightarrow (x+1)^2 + (y - 6)^2 = 169
\]
So center = \((-1, 6)\), radius = 13
Now, perpendicular distance from center to tangent:
\[
\text{Distance} = \frac{|5(-1) - 12(6) + c|}{\sqrt{25 + 144}} = \frac{| -5 - 72 + c|}{13} = 13
\Rightarrow |-77 + c| = 169 \Rightarrow c = 246
\]
So required tangent: \(5x - 12y + 246 = 0\)