We are given a function continuous at \(x = 0\), so:
\[
f(0) = \lim_{x \to 0} \frac{(3^x - 1)^2}{\sin x \cdot \log(1+x)}
\]
Using expansions:
\[
3^x - 1 \approx x \log 3,\quad \sin x \approx x,\quad \log(1+x) \approx x
\]
So:
\[
f(x) \approx \frac{(x \log 3)^2}{x \cdot x} = \frac{x^2 (\log 3)^2}{x^2} = (\log 3)^2
\]
Therefore, \(f(0) = (\log 3)^2\)