If $ i = \sqrt{-1} $ then $\text{Arg}\left[ \frac{(1+i)^{2025}}{1+i^{2022}} \right]=$
For \(i=1,2,3,4\), suppose the points\((\cosθi,\secθi)\) lie on the boundary of a circle,where \(θi∈[0,\frac{π}{6})\) are distinct. Then \(\cosθ_1\ \cosθ_2\ \cosθ_3\ \cosθ_4\) equals
Let α,β be the roots of the equation, ax2+bx+c=0.a,b,c are real and sn=αn+βn and \(\begin{vmatrix}3 &1+s_1 &1+s_2\\1+s_1&1+s_2 &1+s_3\\1+s_2&1+s_3 &1+s_4\end{vmatrix}=\frac{k(a+b+c)^2}{a^4}\) then k=
Let $ X = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \middle| a, b, c, d \in \mathbb{R} \right\} $. If $ f: X \to \mathbb{R} $ is defined by $ f(A) = \det(A) $ for all $ A \in X $, then $ f $ is