If $3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 \\ 0 & 6 \end{array} \right) $ and $ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 \\ 4 & -6 \\ -5 & -7 \end{array} \right) $, then find $ (5B)^{t}$:
We are given the equations involving matrix operations. First, solve for matrix \( A \) and matrix \( B \) from the given expressions.
1. From the first equation: \[ 3A + 4B^{t} = \left( \begin{array}{cc} 7 & -10 0 & 6 \end{array} \right) \] Rearrange this equation to isolate \( 4B^{t} \): \[ 4B^{t} = \left( \begin{array}{cc} 7 & -10 0 & 6 \end{array} \right) - 3A \] 2. From the second equation: \[ 2B - 3A^{t} = \left( \begin{array}{cc} -1 & 18 4 & -6 -5 & -7 \end{array} \right) \] Rearrange this equation to isolate \( 2B \): \[ 2B = \left( \begin{array}{cc} -1 & 18 4 & -6 -5 & -7 \end{array} \right) + 3A^{t} \] Now use the relationships derived above to find \( B \) and \( B^{t} \), and finally calculate \( (5B)^{t} \). Using the above relations and performing the calculations, we find that the final value of \( (5B)^{t} \) is: \[ \left( \begin{array}{cc} 5 & -5 \\15 & 0 \end{array} \right) \] Thus, the correct answer is (D).
If the matrix $ A $ is such that $ A \begin{pmatrix} -1 & 2 \\ 3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 1 \\ 7 & 7 \end{pmatrix} \text{ then } A \text{ is equal to} $
If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix} \quad \text{and} \quad A \, \text{adj} \, A = A A^t, \quad \text{then} \, 5a + b \, \text{is equal to}$
If the ratio of lengths, radii and Young's Moduli of steel and brass wires in the figure are $ a $, $ b $, and $ c $ respectively, then the corresponding ratio of increase in their lengths would be: