The area of a parallelogram whose diagonals are given by $ \vec{u} + \vec{v} $ and $ \vec{v} + \vec{w} $, where:
$ \vec{u} = 2\hat{i} - 3\hat{j} + \hat{k}, \quad \vec{v} = -\hat{i} + \hat{k}, \quad \vec{w} = 2\hat{j} - \hat{k} $ is:
We are given that the area of a parallelogram is half the magnitude of the cross product of its diagonals. Here, the diagonals are \( \vec{u} + \vec{v} \) and \( \vec{v} + \vec{w} \).
Step 1:
First, compute the diagonals: \[ \vec{u} + \vec{v} = (2\hat{i} - 3\hat{j} + \hat{k}) + (-\hat{i} + \hat{k}) = \hat{i} - 3\hat{j} + 2\hat{k} \] \[ \vec{v} + \vec{w} = (-\hat{i} + \hat{k}) + (2\hat{j} - \hat{k}) = -\hat{i} + 2\hat{j} \]
Step 2:
Now, find the cross product of these two vectors: \[ (\vec{u} + \vec{v}) \times (\vec{v} + \vec{w}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} 1 & -3 & 2 \\ -1 & 2 & 0 \end{vmatrix} \] Expanding the determinant: \[ = \hat{i} \begin{vmatrix} -3 & 2 2 & 0 \end{vmatrix} - \hat{j} \begin{vmatrix} 1 & 2 \\ -1 & 0 \end{vmatrix} + \hat{k} \begin{vmatrix} 1 & -3 \\ -1 & 2 \end{vmatrix} \] \[ = \hat{i}((-3)(0) - (2)(2)) - \hat{j}((1)(0) - (2)(-1)) + \hat{k}((1)(2) - (-3)(-1)) \] \[ = \hat{i}(-4) - \hat{j}(2) + \hat{k}(-1) \] \[ = (-4, 2, -1) \]
Step 3:
Find the magnitude of the cross product: \[ |\vec{u} + \vec{v} \times \vec{v} + \vec{w}| = \sqrt{(-4)^2 + 2^2 + (-1)^2} = \sqrt{16 + 4 + 1} = \sqrt{21} \]
Step 4:
The area of the parallelogram is half of the magnitude of the cross product: \[ \text{Area} = \frac{1}{2} \times \sqrt{21} = \sqrt{21} \text{ sq. units.} \]
The direction ratios of the normal to the plane passing through the points
$ (1, 2, -3), \quad (1, -2, 1) \quad \text{and parallel to the line} \quad \frac{x - 2}{2} = \frac{y + 1}{3} = \frac{z}{4} \text{ is:} $
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $