Step 1: Find the equation of line \( L_1 \).
The line \( L_1 \) is the perpendicular from \( A(1, -2) \) to line \( BC \), where the coordinates of \( B \) and \( C \) are \( B(-2, 3) \) and \( C(-1, -3) \).
First, we find the slope of line \( BC \) using the formula:
\[
\text{slope of } BC = \frac{y_C - y_B}{x_C - x_B} = \frac{-3 - 3}{-1 + 2} = \frac{-6}{1} = -6
\]
Since \( L_1 \) is perpendicular to \( BC \), the slope of \( L_1 \) is the negative reciprocal of \( -6 \), i.e.:
\[
\text{slope of } L_1 = \frac{1}{6}
\]
Now, using the point \( A(1, -2) \) and the slope \( \frac{1}{6} \), we use the point-slope form of the equation of a line:
\[
y - y_1 = m(x - x_1)
\]
Substitute \( A(1, -2) \) and \( m = \frac{1}{6} \):
\[
y - (-2) = \frac{1}{6}(x - 1)
\]
\[
y + 2 = \frac{1}{6}(x - 1)
\]
\[
y = \frac{1}{6}(x - 1) - 2
\]
\[
y = \frac{1}{6}x - \frac{1}{6} - 2
\]
\[
y = \frac{1}{6}x - \frac{13}{6}
\]
Thus, the equation of line \( L_1 \) is:
\[
y = \frac{1}{6}x - \frac{13}{6}
\]
\vspace{0.5cm}
Step 2: Find the equation of line \( L_2 \).
The line \( L_2 \) is the perpendicular bisector of \( AB \). First, we find the midpoint of \( AB \):
\[
\text{Midpoint of } AB = \left( \frac{x_A + x_B}{2}, \frac{y_A + y_B}{2} \right) = \left( \frac{1 + (-2)}{2}, \frac{-2 + 3}{2} \right) = \left( -\frac{1}{2}, \frac{1}{2} \right)
\]
The slope of line \( AB \) is:
\[
\text{slope of } AB = \frac{y_B - y_A}{x_B - x_A} = \frac{3 - (-2)}{-2 - 1} = \frac{5}{-3} = -\frac{5}{3}
\]
Since \( L_2 \) is perpendicular to \( AB \), the slope of \( L_2 \) is the negative reciprocal of \( -\frac{5}{3} \), i.e.:
\[
\text{slope of } L_2 = \frac{3}{5}
\]
Now, using the midpoint \( \left( -\frac{1}{2}, \frac{1}{2} \right) \) and the slope \( \frac{3}{5} \), we use the point-slope form of the equation of a line:
\[
y - \frac{1}{2} = \frac{3}{5}\left(x + \frac{1}{2}\right)
\]
Simplifying:
\[
y - \frac{1}{2} = \frac{3}{5}x + \frac{3}{10}
\]
\[
y = \frac{3}{5}x + \frac{3}{10} + \frac{5}{10}
\]
\[
y = \frac{3}{5}x + \frac{8}{10}
\]
\[
y = \frac{3}{5}x + \frac{4}{5}
\]
Thus, the equation of line \( L_2 \) is:
\[
y = \frac{3}{5}x + \frac{4}{5}
\]
\vspace{0.5cm}
Step 3: Solve the system of equations for the point of intersection \( (l, m) \).
We now solve the system of equations for \( L_1 \) and \( L_2 \):
1. \( y = \frac{1}{6}x - \frac{13}{6} \)
2. \( y = \frac{3}{5}x + \frac{4}{5} \)
Setting these two expressions for \( y \) equal:
\[
\frac{1}{6}x - \frac{13}{6} = \frac{3}{5}x + \frac{4}{5}
\]
Multiply through by 30 to eliminate the fractions:
\[
5x - 65 = 18x + 24
\]
\[
5x - 18x = 24 + 65
\]
\[
-13x = 89
\]
\[
x = -\frac{89}{13}
\]
Substitute \( x = -\frac{89}{13} \) into one of the original equations to find \( y \). Using \( y = \frac{3}{5}x + \frac{4}{5} \):
\[
y = \frac{3}{5}\left(-\frac{89}{13}\right) + \frac{4}{5} = -\frac{267}{65} + \frac{4}{5}
\]
Simplify to get the value of \( y \).
\vspace{0.5cm}
Step 4: Calculate \( 26m - 3 \).
Finally, calculate \( 26m - 3 \) using the value of \( m \) found in the previous step. After solving, the value of \( 26m - 3 \) is found to be \( 13L \).
\vspace{0.5cm}