Let the function $ f(x) $ be defined as follows: $$ f(x) = \begin{cases} (1 + | \sin x |)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}<x<0 \\b, & x = 0 \\ \frac{\tan 2x}{\tan 3x}, & 0<x<\frac{\pi}{6} \end{cases} $$ Then the values of $ a $ and $ b $ are:
We are given a piecewise function. First, we analyze the behavior of the function at different intervals:
Step 1: For \( -\frac{\pi}{6} < x < 0 \),
\[ f(x) = (1 + |\sin x|)^{\frac{a}{|\sin x|}}. \]
Step 2: At \( x = 0 \),
\[ f(x) = b. \]
Step 3: For \( 0 < x < \frac{\pi}{6} \),
\[ f(x) = \frac{\tan 2x}{\tan 3x}. \] We then compare the limits and continuity at each interval to determine the correct values of \( a \) and \( b \).
| LIST I | LIST II | ||
| A. | \(\lim\limits_{x\rightarrow0}(1+sinx)^{2\cot x}\) | I. | e-1/6 |
| B. | \(\lim\limits_{x\rightarrow0}e^x-(1+x)/x^2\) | II. | e |
| C. | \(\lim\limits_{x\rightarrow0}(\frac{sinx}{x})^{1/x^2}\) | III. | e2 |
| D. | \(\lim\limits_{x\rightarrow\infty}(\frac{x+2}{x+1})^{x+3}\) | IV. | ½ |
At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.