Let the function $ f(x) $ be defined as follows: $$ f(x) = \begin{cases} (1 + | \sin x |)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6}<x<0 \\b, & x = 0 \\ \frac{\tan 2x}{\tan 3x}, & 0<x<\frac{\pi}{6} \end{cases} $$ Then the values of $ a $ and $ b $ are:
We are given a piecewise function. First, we analyze the behavior of the function at different intervals:
Step 1: For \( -\frac{\pi}{6} < x < 0 \),
\[ f(x) = (1 + |\sin x|)^{\frac{a}{|\sin x|}}. \]
Step 2: At \( x = 0 \),
\[ f(x) = b. \]
Step 3: For \( 0 < x < \frac{\pi}{6} \),
\[ f(x) = \frac{\tan 2x}{\tan 3x}. \] We then compare the limits and continuity at each interval to determine the correct values of \( a \) and \( b \).
LIST I | LIST II | ||
A. | \(\lim\limits_{x\rightarrow0}(1+sinx)^{2\cot x}\) | I. | e-1/6 |
B. | \(\lim\limits_{x\rightarrow0}e^x-(1+x)/x^2\) | II. | e |
C. | \(\lim\limits_{x\rightarrow0}(\frac{sinx}{x})^{1/x^2}\) | III. | e2 |
D. | \(\lim\limits_{x\rightarrow\infty}(\frac{x+2}{x+1})^{x+3}\) | IV. | ½ |