The difference in energy levels of an electron at two excited levels is 13.75 eV. If it makes a transition from the higher energy level to the lower energy level then what will be the wavelength of the emitted radiation?
Given:
$ h = 6.6 \times 10^{-34} \, \text{m}^2 \, \text{kg} \, \text{s}^{-1} $, $ c = 3 \times 10^8 \, \text{ms}^{-1} $, $ 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} $