If the probability density function of a random variable is given by $$ f(x) = \begin{cases} 12x^2(1 - x), & 0 \leq x \leq 1 \\ 0, & \text{elsewhere} \end{cases} $$ then the mean and variance are respectively:
The mean \( \mu \) of a random variable is given by:
\[ \mu = \int_0^1 x f(x) \, dx = \int_0^1 x \cdot 12x^2(1 - x) \, dx = \int_0^1 12x^3(1 - x) \, dx. \] Expanding the integrand: \[ \mu = 12 \int_0^1 (x^3 - x^4) \, dx = 12 \left[ \frac{x^4}{4} - \frac{x^5}{5} \right]_0^1 = 12 \left( \frac{1}{4} - \frac{1}{5} \right) = 12 \times \frac{1}{20} = 0.6. \] Now, the variance \( \sigma^2 \) is given by:
\[ \sigma^2 = \int_0^1 x^2 f(x) \, dx - \mu^2. \] First, compute the second moment: \[ \int_0^1 x^2 f(x) \, dx = \int_0^1 x^2 \cdot 12x^2(1 - x) \, dx = \int_0^1 12x^4(1 - x) \, dx. \] Expanding the integrand: \[ \int_0^1 12x^4(1 - x) \, dx = 12 \int_0^1 (x^4 - x^5) \, dx = 12 \left[ \frac{x^5}{5} - \frac{x^6}{6} \right]_0^1 = 12 \left( \frac{1}{5} - \frac{1}{6} \right) = 12 \times \frac{1}{30} = 0.4. \] Thus, the variance is: \[ \sigma^2 = 0.4 - (0.6)^2 = 0.4 - 0.36 = 0.04. \] Thus, the mean is \( 0.4 \) and the variance is \( 0.6 \).
\( P(X=0 \text{ and } Y=0) = \frac{1}{4}, \)
\( P(X=1 \text{ and } Y=0) = \frac{1}{8}, \)
\( P(X=0 \text{ and } Y=1) = \frac{1}{2}, \)
\( P(X=1 \text{ and } Y=1) = \frac{1}{8}. \)
Calculate the EMF of the Galvanic cell: $ \text{Zn} | \text{Zn}^{2+}(1.0 M) \parallel \text{Cu}^{2+}(0.5 M) | \text{Cu} $ Given: $ E^\circ_{\text{Zn}^{2+}/\text{Zn}} = -0.763 \, \text{V} $ and $ E^\circ_{\text{Cu}^{2+}/\text{Cu}} = +0.350 \, \text{V} $
Find the values of a, b, c, and d for the following redox equation: $ a\text{I}_2 + b\text{NO} + 4\text{H}_2\text{O} = c\text{HNO}_3 + d\text{HI} $