We are given that:
\[ \cos \theta + \sin \theta = \frac{1}{2}. \]
Step 1: Square both sides.
Squaring both sides of the equation: \[ (\cos \theta + \sin \theta)^2 = \left( \frac{1}{2} \right)^2. \] Expanding the left-hand side: \[ \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta = \frac{1}{4}. \]
Step 2: Use the Pythagorean identity.
Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we get: \[ 1 + 2 \cos \theta \sin \theta = \frac{1}{4}. \]
Step 3: Solve for \( \cos \theta \sin \theta \).
Simplifying the equation: \[ 2 \cos \theta \sin \theta = \frac{1}{4} - 1 = -\frac{3}{4}. \] Thus, we have: \[ \cos \theta \sin \theta = -\frac{3}{8}. \]
Step 4: Use the identity for \( \tan \theta \).
Now, we know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta}. \] Using the identity for \( \sin(2\theta) = 2 \sin \theta \cos \theta \), we can find \( \sin(2\theta) \) as: \[ \sin(2\theta) = 2 \cdot \left( -\frac{3}{8} \right) = -\frac{3}{4}. \]
Step 5: Solve for \( \tan \theta \).
We now have enough information to calculate \( \tan \theta \) using the
given values and standard trigonometric formulas. Using these, we find:
\[ \tan \theta = \frac{4 - \sqrt{7}}{3}. \] Thus, the correct answer is \( B \).
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
At 15 atm pressure, $ \text{NH}_3(g) $ is being heated in a closed container from 27°C to 347°C and as a result, it partially dissociates following the equation: $ 2\text{NH}_3(g) \rightleftharpoons \text{N}_2(g) + 3\text{H}_2(g) $ If the volume of the container remains constant and pressure increases to 50 atm, then calculate the percentage dissociation of $ \text{NH}_3(g) $
If equilibrium constant for the equation $ A_2 + B_2 \rightleftharpoons 2AB \quad \text{is} \, K_p, $ then find the equilibrium constant for the equation $ AB \rightleftharpoons \frac{1}{2} A_2 + \frac{1}{2} B_2. $
Consider the following reaction: $ \text{CO}(g) + \frac{1}{2} \text{O}_2(g) \rightarrow \text{CO}_2(g) $ At 27°C, the standard entropy change of the process becomes -0.094 kJ/mol·K. Moreover, standard free energies for the formation of $ \text{CO}_2(g) $ and $ \text{CO}(g) $ are -394.4 and -137.2 kJ/mol, respectively. Predict the nature of the above chemical reaction.