We are given that:
\[ \cos \theta + \sin \theta = \frac{1}{2}. \]
Step 1: Square both sides.
Squaring both sides of the equation: \[ (\cos \theta + \sin \theta)^2 = \left( \frac{1}{2} \right)^2. \] Expanding the left-hand side: \[ \cos^2 \theta + 2 \cos \theta \sin \theta + \sin^2 \theta = \frac{1}{4}. \]
Step 2: Use the Pythagorean identity.
Using the Pythagorean identity \( \cos^2 \theta + \sin^2 \theta = 1 \), we get: \[ 1 + 2 \cos \theta \sin \theta = \frac{1}{4}. \]
Step 3: Solve for \( \cos \theta \sin \theta \).
Simplifying the equation: \[ 2 \cos \theta \sin \theta = \frac{1}{4} - 1 = -\frac{3}{4}. \] Thus, we have: \[ \cos \theta \sin \theta = -\frac{3}{8}. \]
Step 4: Use the identity for \( \tan \theta \).
Now, we know that: \[ \tan \theta = \frac{\sin \theta}{\cos \theta}. \] Using the identity for \( \sin(2\theta) = 2 \sin \theta \cos \theta \), we can find \( \sin(2\theta) \) as: \[ \sin(2\theta) = 2 \cdot \left( -\frac{3}{8} \right) = -\frac{3}{4}. \]
Step 5: Solve for \( \tan \theta \).
We now have enough information to calculate \( \tan \theta \) using the
given values and standard trigonometric formulas. Using these, we find:
\[ \tan \theta = \frac{4 - \sqrt{7}}{3}. \] Thus, the correct answer is \( B \).
Given that $\sin \theta + \cos \theta = x$, prove that $\sin^4 \theta + \cos^4 \theta = \dfrac{2 - (x^2 - 1)^2}{2}$.