Let αx=exp(xβyγ) be the solution of the differential equation 2x2ydy−(1−xy2) dx = 0, x>0 , y(2)=\(\sqrt {log_e2}\). Then α+β−γ equals :
x=logp and y=1/p differential equation
Let \(f:R→R\) be a function defined by \(f(x)=x^2+9\).The range of \(f \) is
The value of the integral \(\int \limits_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{x+\frac{\pi}{4}}{2-\cos 2 x} d x\)is :
Shortest distance between lines \(\frac{(x-5)}{4}\)=\(\frac{(y-3)}{6}\)=\(\frac{(z-2)}{4}\) and \(\frac{(x-3)}{7}=\frac{(y-2)}{5}=\frac{(z-9)}{6}\) is ?
If (21)18 + 20·(21)17 + (20)2 · (21)16 + ……….. (20)18 = k (2119 – 2019) then k =
Let $H$ be the hyperbola, whose foci are $(1 \pm \sqrt{2}, 0)$ and eccentricity is $\sqrt{2}$. Then the length of its latus rectum is _____