If l, m, n are the pth, qth and rth terms of a G.P. respectively and l, m, n > 0, then
\[ \begin{vmatrix} \log_l p & 1 \\ \log_m q & 1 \\ \log_n r & 1 \end{vmatrix} \]
If \( \sqrt{5} - i\sqrt{15} = r(\cos\theta + i\sin\theta), -\pi < \theta < \pi, \) then
\[ r^2(\sec\theta + 3\csc^2\theta) = \]
Evaluate the integral: \[ \int_{\frac{\pi}{5}}^{\frac{3\pi}{10}} \frac{dx}{\sec^2 x + (\tan^{2022} x - 1)(\sec^2 x - 1)} \]
When \( |x| < 2 \), the coefficient of \( x^2 \) in the power series expansion of
\[ \frac{x}{(x-2)(x-3)} \]
is:
Let $E_1$ and $E_2$ be two independent events of a random experiment such that$P(E_1) = \frac{1}{2}, \quad P(E_1 \cup E_2) = \frac{2}{3}$.Then match the items of List-I with the items of List-II:
The correct match is: