>
Mathematics
List of top Mathematics Questions
Let \( \mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k} \) and \( \mathbf{b} = \mathbf{i} - 2\mathbf{j} - 3\mathbf{k} \) be two vectors. If \( A_1 \) is the area of the quadrilateral having \( \mathbf{a}, \mathbf{b} \) as its diagonals and \( A_2 \) is the area of the parallelogram having \( \mathbf{a}, \mathbf{b} \) as its adjacent sides, then \( A_1 : A_2 = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry and Vectors
Let \( \mathbf{a} = \mathbf{i} - 2\mathbf{j} \), \( \mathbf{b} = 2\mathbf{j} + 3\mathbf{k} \), \( \mathbf{c} = p\mathbf{i} + q\mathbf{j} \) and \( \mathbf{d} = p\mathbf{j} - q\mathbf{k} \) be four vectors. If \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 3 \) and \( (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{d} = 0 \), then \( 3p + q = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry and Vectors
For some real number \( \lambda \), if the area of the triangle having \( \mathbf{a} = \lambda \mathbf{i} - 3\mathbf{j} + \mathbf{k} \) and \( \mathbf{b} = 2\mathbf{i} + \lambda \mathbf{j} - 3\mathbf{k} \) as two of its sides is \( \frac{\sqrt{195}}{2} \), then the number of distinct possible values of \( \lambda \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Geometry and Vectors
If \( \frac{x^4 - 6x^3 + 9x^2 + 5x - 20}{x^2 - x - 2} = f(x) + \frac{a}{x + p} + \frac{b}{x + q} \), then \( 2(a + b) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Algebra
In \( \triangle ABC \), if \( r_1 = 2r_2 = 3r_3 \), then
AP EAPCET - 2023
AP EAPCET
Mathematics
Triangles
In \( \triangle ABC \), \( \angle B = 60^\circ \) and \( \angle A = 75^\circ \). If a point \( D \) divides \( BC \) in the ratio \( 2:3 \), then \( \sin \angle BAD : \sin \angle CAD = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Triangles
If \( \cos A + \cos(A + B) + \cos(A + 2B) + \cdots \) upto \( n \) terms \( = \cos \left( \frac{2A + (n-1)B}{2} \right) \frac{\sin \frac{nB}{2}}{\sin \frac{B}{2}} \), then \( \cos \frac{3\pi}{19} + \cos \frac{5\pi}{19} + \cos \frac{7\pi}{19} + \cdots + \cos \frac{17\pi}{19} = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
If two angles \( \alpha, \beta \) are such that \( 0<\alpha, \beta<\frac{\pi}{4} \), \( \sqrt{1 + \cos 2\alpha} = \frac{3}{\sqrt{5}} \) and \( \frac{\sqrt{1 - \cos 2\beta}}{\sqrt{1 + \cos 2\beta}} = \frac{1}{7} \), then \( (2\alpha + \beta) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
If \( \cosh \alpha + \sinh \alpha = e^x \) and \( \sinh x = \frac{\alpha}{\alpha + 1} \), then \( \tanh x = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
In \( \triangle ABC \), if \( \tan \frac{A}{2} + \tan \frac{C}{2} = \frac{b}{s} \), then \( \sin \left( \frac{A + C}{3} \right) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
If a seven digit number formed with distinct digits 4, 6, 9, 5, 3, \( x \) and \( y \) is divisible by 3, then the number of such ordered pairs \( (x, y) \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Number System
If \( 3 \cdot {}^5C_0 + 8 \cdot {}^5C_1 + 13 \cdot {}^5C_2 + 18 \cdot {}^5C_3 + 23 \cdot {}^5C_4 + 28 \cdot {}^5C_5 = k \cdot 2^5 \), then \( k = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Binomial theorem
The coefficient of \( x^r \) in the expansion of \( \frac{1}{\sqrt{(1 - 2x)^3}} \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Binomial Expansion
The least value of \( n \) such that \( {}^{n-1}C_6 + {}^{n-1}C_7<{}^nC_8 \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Combinatorics
\( \sin^4 \frac{\pi}{8} + \sin^4 \frac{3\pi}{8} + \sin^4 \frac{5\pi}{8} + \sin^4 \frac{7\pi}{8} = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
In \( \triangle ABC \), if \( \cos A \cos B \cos C = \frac{1}{5} \), then \( \tan A \tan B + \tan B \tan C + \tan C \tan A = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
If \( \cos(\theta - \alpha), \cos \theta \) and \( \cos(\theta + \alpha) \) are in harmonic progression, then \( 2 \tan^2 \theta = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Trigonometric Identities
If \( 2^n \) divides \( 16! \) and \( 2^{n+1} \) does not divide \( 16! \), then \( n = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Number System
If the roots of the equation \( 16x^3 - 44x^2 + 36x - 9 = 0 \) are in harmonic progression, then its greatest root is
AP EAPCET - 2023
AP EAPCET
Mathematics
Algebra
If \( \alpha \) and \( \beta \) are the roots of the equation \( ax^2 + bx + c = 0 \), then the equation whose roots are \( \alpha + \beta \) and \( \frac{1}{\alpha} + \frac{1}{\beta} \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Algebra
If \( \alpha \) and \( \beta \) are the roots of the equation \( 2x^2 - 4x + 3 = 0 \), then \( \frac{2(\alpha^4 + \beta^4) + 3(\alpha^2 + \beta^2)}{\alpha + \beta} = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Algebra
Let the two values of \( z = \frac{1 - i}{\sqrt{1 + i}} \) be \( z_1 \) and \( z_2 \). If \( -\frac{\pi}{2}<\text{Arg}(z_1)<\text{Arg}(z_2)<\pi \), then \( \text{Arg}(z_1) + \text{Arg}(z_2) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Complex numbers
If \( \omega \) is a complex cube root of unity, then \( \cos \left( \sum_{k=1}^{2} (k - \omega)(k - \omega^2) \frac{\pi}{175} \right) = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Complex numbers
If \( \alpha \) and \( \beta \) are the roots of the equation \( x^2 + x + 1 = 0 \), then the quadratic equation whose roots are \( \alpha^{2023} \) and \( \beta^{2012} \) is
AP EAPCET - 2023
AP EAPCET
Mathematics
Complex numbers
If there exists a \( k^{th} \) order non-singular sub-matrix in a matrix \( P \) of order \( m \times n \), then the rank \( (\rho) \) of \( P \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Matrices
Prev
1
...
336
337
338
339
340
...
924
Next