Step 1: Expressing in \( R \sin(x + \alpha) \) Form
The given expression:
\[
12 \sin x - 5 \cos x
\]
is rewritten as:
\[
R \sin (x + \alpha)
\]
where:
\[
R = \sqrt{12^2 + (-5)^2} = \sqrt{144 + 25} = \sqrt{169} = 13
\]
Thus:
\[
12 \sin x - 5 \cos x = 13 \sin (x + \alpha)
\]
Step 2: Finding Maximum Value
Since \( \sin(x + \alpha) \) has a maximum value of 1:
\[
13 \times 1 + 3 = 16
\]
Thus, the correct answer is \( 16 \).