Step 1: Conjugate points condition
Two points \( (x_1, y_1) \) and \( (x_2, y_2) \) are conjugates w.r.t. a circle \( x^2 + y^2 = r^2 \) if:
\[
x_1 x_2 + y_1 y_2 = r^2.
\]
For the given circle \( x^2 + y^2 = 4 \), the equation becomes:
\[
3\alpha + 2\beta = 4.
\]
Step 2: Find \( \alpha \) and \( \beta \)
Since \( P(\alpha, \beta) \) lies on the line \( 2x + y = 1 \), we substitute:
\[
2\alpha + \beta = 1.
\]
Step 3: Solve for \( \alpha + \beta \)
Solving the system:
\[
3\alpha + 2\beta = 4, \quad 2\alpha + \beta = 1.
\]
Multiplying the second equation by 2:
\[
4\alpha + 2\beta = 2.
\]
Subtracting,
\[
(3\alpha + 2\beta)
- (4\alpha + 2\beta) = 4
- 2.
\]
\[
-\alpha = 2 \Rightarrow \alpha =
-2.
\]
Substituting in \( 2\alpha + \beta = 1 \):
\[
2(
-2) + \beta = 1 \Rightarrow
-4 + \beta = 1 \Rightarrow \beta = 5.
\]
\[
\alpha + \beta =
-2 + 5 = 3.
\]