We are given a triangle \( \triangle ABC \) with sides \( a = 13 \), \( b = 14 \), and \( \cos \frac{C}{2} = \frac{3}{\sqrt{13}} \). We are tasked with finding \( 2r_1 \), where \( r_1 \) is the inradius.
Step 1: Using the half-angle formula The half-angle identity for cosine is given by: \[ \cos \frac{C}{2} = \sqrt{\frac{1 + \cos C}{2}}. \] Using this identity and the given value of \( \cos \frac{C}{2} = \frac{3}{\sqrt{13}} \), we can solve for \( \cos C \).
Step 2: Solving for \( S \) Using the Law of Cosines and other relevant identities, we can calculate the area \( S \) of the triangle. The inradius \( r_1 \) is related to the area \( S \) by the formula: \[ r_1 = \frac{S}{s}, \] where \( s \) is the semiperimeter of the triangle. After calculating, we find that \( 2r_1 = S \). Thus, the correct answer is \( S \).
Arrange the following in increasing order of their pK\(_b\) values.
What is Z in the following set of reactions?
Acetophenone can be prepared from which of the following reactants?
What are \(X\) and \(Y\) in the following reactions?
What are \(X\) and \(Y\) respectively in the following reaction?