We need to find the square root of the independent term in the expansion of:
\[
\left( \frac{2x^2}{5} + \frac{5}{\sqrt{x}} \right)^{10}
\]
Step 1: General Term in the Binomial Expansion
The general term in the binomial expansion of \( (a + b)^{n} \) is given by:
\[
T_k = \binom{n}{k} a^{n-k} b^k
\]
For the expression \( \left( \frac{2x^2}{5} + \frac{5}{\sqrt{x}} \right)^{10} \), we identify:
- \( a = \frac{2x^2}{5} \),
- \( b = \frac{5}{\sqrt{x}} \),
- \( n = 10 \).
Thus, the general term is:
\[
T_k = \binom{10}{k} \left( \frac{2x^2}{5} \right)^{10-k} \left( \frac{5}{\sqrt{x}} \right)^k
\]
Simplifying:
\[
T_k = \binom{10}{k} \left( \frac{2^{10-k} x^{2(10-k)}}{5^{10-k}} \right) \left( \frac{5^k}{x^{k/2}} \right)
\]
This simplifies to:
\[
T_k = \binom{10}{k} \frac{2^{10-k} 5^k}{5^{10-k}} x^{2(10-k) - k/2}
\]
So the exponent of \( x \) in the general term is:
\[
2(10-k) - \frac{k}{2} = 20 - 2k - \frac{k}{2} = 20 - \frac{5k}{2}
\]
Step 2: Finding the Independent Term
For the independent term, the exponent of \( x \) must be zero. Therefore, set the exponent of \( x \) to zero:
\[
20 - \frac{5k}{2} = 0
\]
Solving for \( k \):
\[
\frac{5k}{2} = 20 \quad \Rightarrow \quad k = 8
\]
Step 3: Finding the Value of the Independent Term
Substitute \( k = 8 \) into the expression for \( T_k \):
\[
T_8 = \binom{10}{8} \frac{2^{10-8} 5^8}{5^{10-8}} x^{0}
\]
Simplifying:
\[
T_8 = \binom{10}{8} \frac{2^2 5^8}{5^2} = \binom{10}{8} \frac{4 \cdot 5^6}{25}
\]
Using \( \binom{10}{8} = 45 \):
\[
T_8 = 45 \times \frac{4 \cdot 5^6}{25} = 45 \times \frac{4 \cdot 15625}{25} = 45 \times 2500 = 112500
\]
Step 4: Finding the Square Root
The square root of the independent term is:
\[
\sqrt{112500} = 30 \sqrt{5}
\]
Thus, the correct answer is:
\[
\boxed{30\sqrt{5}}
\]