Step 1: Find the Center and Radius of the Circle
Rewriting the given equation:
\[
x^2 + y^2 - 6x + 4y + 12 = 0
\]
Completing the square:
\[
(x - 3)^2 - 9 + (y + 2)^2 - 4 + 12 = 0
\]
\[
(x - 3)^2 + (y + 2)^2 = 1
\]
Thus, the center is \( (3,-2) \) and radius \( r = 1 \).
Step 2: Compute the Distance from Point \( P(2,3) \) to Center
Using the distance formula:
\[
PC = \sqrt{(2-3)^2 + (3+2)^2} = \sqrt{1 + 25} = \sqrt{26}
\]
Step 3: Compute the Angle Between the Tangents
Using:
\[
\tan \frac{\theta}{2} = \frac{r}{PC} = \frac{1}{\sqrt{26}}
\]
\[
\theta = 2 \tan^{-1} \left( \frac{1}{\sqrt{26}} \right)
\]
Approximating, we get:
\[
\theta = \tan^{-1} \left( \frac{5}{12} \right)
\]