Step 1: Find centers and radii
Circle 1: \( x^2 + y^2 + 2ax + 2y
- 8 = 0 \)
Center \( C_1 = (
-a,
-1) \), radius \( r_1^2 = a^2 + 1^2 + 8 \).
Circle 2: \( x^2 + y^2
- 2x + ay
- 14 = 0 \)
Center \( C_2 = (1,
-\frac{a}{2}) \), radius \( r_2^2 = 1^2 + \left(\frac{a}{2}\right)^2 + 14 \).
Step 2: Orthogonality condition
Two circles intersect orthogonally if:
\[
2g_1g_2 + 2f_1f_2 = c_1 + c_2.
\]
Substituting values from equations, solving for \( a \), and finding the center distance:
\[
C_1C_2 = \sqrt{(a + 1)^2 + \left(
-1 + \frac{a}{2}\right)^2}.
\]
After solving, we get:
\[
C_1C_2 = \sqrt{629}.
\]