If \( Q(h, k) \) is the inverse point of \( P(1,2) \) with respect to the circle \( x^2 + y^2 - 4x + 1 = 0 \), then \( 2h + k \) is:
Show Hint
The inverse point of a point \( P(x_1, y_1) \) with respect to a circle is given by:
\[
Q \left( \frac{r^2 x_1}{(x_1 - a)^2 + (y_1 - b)^2}, \frac{r^2 y_1}{(x_1 - a)^2 + (y_1 - b)^2} \right)
\]
The inverse point formula with respect to a circle is:
\[
h = \frac{r^2 x_1}{(x_1 - a)^2 + (y_1 - b)^2}, \quad k = \frac{r^2 y_1}{(x_1 - a)^2 + (y_1 - b)^2}
\]
After solving, we obtain:
\[
2h + k = 4
\]