The number of subsets of a set with 8 elements is \( 2^8 = 256 \). We are asked to find the number of subsets that contain at least 6 elements.
Step 1: Use the binomial coefficient to calculate the number of subsets with exactly 6, 7, and 8 elements: \( \binom{8}{6} + \binom{8}{7} + \binom{8}{8} = \frac{8 \times 7}{2 \times 1} + \frac{8}{1} + 1 = 28 + 8 + 1 = 37 \)
Step 2: The total number of subsets with at least 6 elements is 37.
Match List-I with List-II
List-I | List-II |
---|---|
(A) \(^{8}P_{3} - ^{10}C_{3}\) | (I) 6 |
(B) \(^{8}P_{5}\) | (II) 21 |
(C) \(^{n}P_{4} = 360,\) then find \(n\). | (III) 216 |
(D) \(^{n}C_{2} = 210,\) find \(n\). | (IV) 6720 |
Choose the correct answer from the options given below: