Step 1: Given that \( X \) takes values \( 1, 2, \dots, n \) with equal probability, this is a discrete uniform distribution.
\[
P(X = k) = \frac{1}{n}
\text{for } k = 1, 2, \dots, n
\]
Step 2: The mean of a discrete uniform distribution is:
\[
\mu = E(X) = \frac{1 + 2 + \dots + n}{n} = \frac{n(n+1)/2}{n} = \frac{n+1}{2}
\]
Step 3: Compute \( E(X^2) \):
\[
E(X^2) = \frac{1^2 + 2^2 + \dots + n^2}{n} = \frac{n(n+1)(2n+1)}{6n} = \frac{(n+1)(2n+1)}{6}
\]
Step 4: Use the formula for variance:
\[
\text{Var}(X) = E(X^2) - [E(X)]^2
\]
\[
= \frac{(n+1)(2n+1)}{6} - \left( \frac{n+1}{2} \right)^2
= \frac{(n+1)}{6} \left( 2n+1 - \frac{3(n+1)}{2} \right)
= \frac{n^2 - 1}{12}
\]