Step 1: Given point \( P(2, -1) \), and the line is \( x - y + 1 = 0 \)
Step 2: Use the formula for reflection of a point \( (x_1, y_1) \) about the line \( Ax + By + C = 0 \):
\[
(x', y') = \left( x_1 - \frac{2A(Ax_1 + By_1 + C)}{A^2 + B^2}, \ y_1 - \frac{2B(Ax_1 + By_1 + C)}{A^2 + B^2} \right)
\]
Step 3: For line \( x - y + 1 = 0 \), \( A = 1, B = -1, C = 1 \), and point \( (x_1, y_1) = (2, -1) \)
\[
Ax_1 + By_1 + C = 1(2) + (-1)(-1) + 1 = 2 + 1 + 1 = 4
\]
\[
A^2 + B^2 = 1^2 + (-1)^2 = 2
\]
Step 4: Plug into the formula:
\[
x' = 2 - \frac{2(1)(4)}{2} = 2 - 4 = -2
\]
\[
y' = -1 - \frac{2(-1)(4)}{2} = -1 + 4 = 3
\]
So the image point is \( (-2, 3) \).