A rectangle has a length \(L\) and a width \(W\), where \(L > W\). If the width, \(W\), is increased by 10%, which one of the following statements is correct for all values of \(L\) and \(W\)? Select the most appropriate option to complete the above sentence.
Let \( y = f(x) \) be the solution of the differential equation
\[ \frac{dy}{dx} + 3y \tan^2 x + 3y = \sec^2 x \]
such that \( f(0) = \frac{e^3}{3} + 1 \), then \( f\left( \frac{\pi}{4} \right) \) is equal to:
If \( \lim_{x \to 0} \left( \frac{\tan x}{x} \right)^{\frac{1}{x^2}} = p \), then \( 96 \ln p \) is: 32
If \[ \frac{dy}{dx} + 2y \sec^2 x = 2 \sec^2 x + 3 \tan x \cdot \sec^2 x \] and
and \( f(0) = \frac{5}{4} \), then the value of \[ 12 \left( y \left( \frac{\pi}{4} \right) - \frac{1}{e^2} \right) \] equals to:
For the matrix [A] given below, the transpose is __________. \[ A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 4 & 5 \\ 4 & 3 & 2 \end{bmatrix} \]
Integration of \(\ln(x)\) with \(x\), i.e. \(\int \ln(x)dx =\) __________.
The integral is given by:
\[ 80 \int_{0}^{\frac{\pi}{4}} \frac{\sin\theta + \cos\theta}{9 + 16 \sin 2\theta} d\theta \]
is equals to?