Let the equation of the line through origin be \( y = mx \).
It intersects the lines:
1. \( 4x + 2y = 9 \Rightarrow 4x + 2mx = 9 \Rightarrow x(4 + 2m) = 9 \Rightarrow x = \frac{9}{4 + 2m} \)
So the point \( P \) is:
\[
P = \left( \frac{9}{4 + 2m},\ \frac{9m}{4 + 2m} \right)
\]
2. \( 2x + y + 6 = 0 \Rightarrow 2x + mx = -6 \Rightarrow x(2 + m) = -6 \Rightarrow x = \frac{-6}{2 + m} \)
So the point \( Q \) is:
\[
Q = \left( \frac{-6}{2 + m},\ \frac{-6m}{2 + m} \right)
\]
Now we find the ratio \( \frac{OP}{OQ} \) using the distances from origin:
\[
OP = \sqrt{ \left( \frac{9}{4 + 2m} \right)^2 + \left( \frac{9m}{4 + 2m} \right)^2 } = \frac{9}{4 + 2m} \sqrt{1 + m^2}
\]
\[
OQ = \sqrt{ \left( \frac{-6}{2 + m} \right)^2 + \left( \frac{-6m}{2 + m} \right)^2 } = \frac{6}{2 + m} \sqrt{1 + m^2}
\]
Now,
\[
\frac{OP}{OQ} = \frac{ \frac{9}{4 + 2m} }{ \frac{6}{2 + m} } = \frac{9(2 + m)}{6(4 + 2m)} = \frac{3(2 + m)}{2(4 + 2m)}
\]
Simplify:
\[
= \frac{3(2 + m)}{2 . 2(2 + m)} = \frac{3}{4}
\Rightarrow \text{Ratio } OP : OQ = 3 : 4
\Rightarrow \text{Ratio } PQ \text{ is divided by } O = 3 : 4
\]