Step 1: The perpendicular from the origin to the line makes an angle \( \frac{\pi}{4} \) with the **negative X-axis**, i.e., the angle with the **positive X-axis** is \( \pi - \frac{\pi}{4} = \frac{3\pi}{4} \).
So, the normal form of the line is:
\[
x \cos\left(\frac{3\pi}{4}\right) + y \sin\left(\frac{3\pi}{4}\right) = p
\]
Step 2: \( p = 10 \), the perpendicular distance from the origin.
\[
x . \left(-\frac{1}{\sqrt{2}}\right) + y . \left(\frac{1}{\sqrt{2}}\right) = 10
\Rightarrow \frac{-x + y}{\sqrt{2}} = 10
\Rightarrow -x + y = 10\sqrt{2}
\Rightarrow x - y + 10\sqrt{2} = 0
\]