The given equation is a homogeneous equation representing a pair of straight lines:
\[
3x^2 - 2y^2 + axy = 0
\]
For such an equation, the angle \( \theta \) between the lines is given by:
\[
\tan\theta = \left| \frac{a}{b - c} \right|
\]
where the general form is \( ax^2 + 2hxy + by^2 = 0 \). Comparing:
- \( a = 3 \), \( b = -2 \), \( 2h = a \Rightarrow h = \frac{a}{2} \)
Now apply the formula:
\[
\tan\theta = \left| \frac{a}{3 + 2} \right| = \left| \frac{a}{5} \right|
\]
But the angle is given as \( 60^\circ \), so:
\[
\tan 60^\circ = \sqrt{3} = \left| \frac{a}{5} \right|
\Rightarrow a = 5\sqrt{3}
\]
Wait, this contradicts the correct answer marked as \( \sqrt{3} \). Let's re-check using the right form.
Actually, the correct angle formula for the pair of lines \( ax^2 + 2hxy + by^2 = 0 \) is:
\[
\tan \theta = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|
\]
From the given equation:
- \( a = 3 \), \( b = -2 \), \( h = \frac{a}{2} \)
Now apply:
\[
\tan 60^\circ = \sqrt{3} = \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|
= \left| \frac{2\sqrt{ \left( \frac{a}{2} \right)^2 - 3(-2) }}{3 - 2} \right|
= 2\sqrt{ \frac{a^2}{4} + 6 }
\]
Set this equal to \( \sqrt{3} \):
\[
\sqrt{3} = 2\sqrt{ \frac{a^2}{4} + 6 }
\Rightarrow \frac{\sqrt{3}}{2} = \sqrt{ \frac{a^2}{4} + 6 }
\Rightarrow \frac{3}{4} = \frac{a^2}{4} + 6
\Rightarrow \frac{3}{4} - 6 = \frac{a^2}{4}
\Rightarrow \frac{-21}{4} = \frac{a^2}{4}
\]
This gives imaginary result — a contradiction, suggesting earlier confusion. Let’s simplify.
Instead, rewrite the given equation in terms of slopes:
Assume line is of form:
\[
y = mx \Rightarrow \text{substitute } y = mx \text{ into } 3x^2 - 2y^2 + axy = 0
\Rightarrow 3x^2 - 2m^2x^2 + a x . mx = 0
\Rightarrow (3 - 2m^2 + am)x^2 = 0
\Rightarrow 3 - 2m^2 + am = 0
\]
Given the line makes \( 60^\circ \) with x-axis, \( m = \tan(60^\circ) = \sqrt{3} \)
Substitute:
\[
3 - 2(\sqrt{3})^2 + a(\sqrt{3}) = 0
\Rightarrow 3 - 6 + a\sqrt{3} = 0
\Rightarrow -3 + a\sqrt{3} = 0
\Rightarrow a = \sqrt{3}
\]