We are given:
- Hyperbola of the form \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \)
- Eccentricity \( e = 2 \Rightarrow e^2 = 4 \)
- From hyperbola identity: \( e^2 = 1 + \frac{b^2}{a^2} \Rightarrow 4 = 1 + \frac{b^2}{a^2} \Rightarrow \frac{b^2}{a^2} = 3 \)
Thus, \( \frac{b^2}{a^2} = 3 \Rightarrow \frac{y^2}{b^2} = \frac{y^2}{3a^2} \)
So the equation becomes:
\[
\frac{x^2}{a^2} - \frac{y^2}{3a^2} = 1 \Rightarrow \frac{1}{a^2}(x^2 - \frac{y^2}{3}) = 1
\Rightarrow x^2 - \frac{y^2}{3} = a^2
\]
Substitute point (4, 6):
\[
4^2 - \frac{6^2}{3} = a^2 \Rightarrow 16 - \frac{36}{3} = a^2 \Rightarrow 16 - 12 = a^2 \Rightarrow a^2 = 4
\Rightarrow b^2 = 3a^2 = 12
\]
So the hyperbola becomes:
\[
\frac{x^2}{4} - \frac{y^2}{12} = 1
\]
To find the tangent at (4,6), use the standard formula for tangent at point \( (x_0, y_0) \) on a hyperbola:
\[
\frac{xx_0}{a^2} - \frac{yy_0}{b^2} = 1
\Rightarrow \frac{x . 4}{4} - \frac{y . 6}{12} = 1
\Rightarrow x - \frac{y}{2} = 1
\Rightarrow 2x - y = 2
\Rightarrow \boxed{2x - y - 2 = 0}
\]