>
Mathematics
List of top Mathematics Questions
Let
\( \vec{a} = 2\hat{i} + \hat{j} + 3\hat{k} \), \( \vec{b} = 3\hat{i} + 3\hat{j} + \hat{k} \),
and
\( \vec{c} = \hat{i} - 2\hat{j} + 3\hat{k} \)
be three vectors. If
\( \vec{r} \)
is a vector such that
\( \vec{r} \times \vec{a} = \vec{r} \times \vec{b} \)
and
\( \vec{r} . \vec{c} = 18 \),
then the magnitude of the orthogonal projection of
\( 4\hat{i} + 3\hat{j} - \hat{k} \)
on
\( \vec{r} \)
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Geometry and Vectors
The equation
\[ \cos^{-1}(1 - x) - 2 \cos^{-1} x = \frac{\pi}{2} \]
has:
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
In
\( \triangle ABC \),
if A, B, C are in arithmetic progression, then
\[ \sqrt{a^2 - ac + c^2} . \cos\left(\frac{A - C}{2}\right) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If
\( \sinh^{-1}(2) + \sinh^{-1}(3) = \alpha \),
then
\( \sinh\alpha = \) ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If in
\( \triangle ABC \), \( B = 45^\circ \), \( a = 2(\sqrt{3} + 1) \)
and area of
\( \triangle ABC \)
is
\( 6 + 2\sqrt{3} \)
sq. units, then the side
\( b = \ ? \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Triangles
If
\[ \frac{x^2}{(x^2 + 2)(x^4 - 1)} = \frac{A}{x^2 - 1} + \frac{B}{x^2 + 1} + \frac{C}{x^2 + 2}, \text{ then } A + B - C =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Trigonometric Identities
If \( x \) is a positive real number and the first negative term in the expansion of
\[ (1 + x)^{27/5} \text{ is } t_k, \text{ then } k =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is
AP EAPCET - 2025
AP EAPCET
Mathematics
Number System
A string of letters is to be formed by using 4 letters from all the letters of the word “MATHEMATICS”. The number of ways this can be done such that two letters are of same kind and the other two are of different kind is
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial theorem
\[ \sum_{r=1}^{15} r^2 \left( \frac{{}^{15}C_r}{{}^{15}C_{r-1}} \right) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Binomial Expansion
Evaluate the following expression:
\[ \frac{1}{81^n} - \binom{2n}{1} . \frac{10}{81^n} + \binom{2n}{2} . \frac{10^2}{81^n} - .s + \frac{10^{2n}}{81^n} = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Combinatorics
If
\( \alpha, \beta, \gamma \)
are the roots of the equation
\[ x^3 + px^2 + qx + r = 0, \]
then
\[ (\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =\ ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \alpha, \beta \) are the roots of \( x^2 - 5x - 68 = 0 \) and \( \gamma, \delta \) are the roots of \( x^2 - 5\alpha x - 6\beta = 0 \), then \( \alpha + \beta + \gamma + \delta = \) ?
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
The equation
\[ x^{\frac{3}{4}(\log_{x} x)^2 + \log_{x} x^{-\frac{5}{4}}} = \sqrt{2} \]
has
AP EAPCET - 2025
AP EAPCET
Mathematics
Algebra
If
\( \omega_1 \) and \( \omega_2 \) are two non-zero complex numbers and \( a, b \) are non-zero real numbers such that \[ |a\omega_1 + b\omega_2| = |a\omega_1 - b\omega_2|, \] then \( \dfrac{\omega_1}{\omega_2} \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
If
\( \alpha \) is the common root of the quadratic equations \( x^2 - 5x + 4a = 0 \) and \( x^2 - 2ax - 8 = 0 \), where \( a \in \mathbb{R} \), then the value of \( \alpha^4 - \alpha^3 + 68 \) is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Complex numbers
Let \( g(x) = 1 + x - \lfloor x \rfloor \) and
\[ f(x) = \begin{cases} -1, & x<0\\ 0, & x = 0 \\ 1, & x>0 \end{cases} \]
where \( \lfloor x \rfloor \) denotes the greatest integer less than or equal to \( x \). Then for all \( x \), \( f(g(x)) = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
If the system of equations \( 2x + py + 6z = 8 \), \( x + 2y + qz = 5 \) and \( x + y + 3z = 4 \) has infinitely many solutions, then \( p = \)?
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
If \( f : \mathbb{R} \to A \), defined by \( f(x) = \cos x + \sqrt{3}\sin x - 1 \), is an onto function, then \( A = \)
AP EAPCET - 2025
AP EAPCET
Mathematics
Functions
The remainder obtained when \( (2m + 1)^{2n} \), \( m, n \in \mathbb{N} \) is divided by 8 is
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
A value of \( \theta \) lying between \( 0 \) and \( \dfrac{\pi}{2} \) and satisfying
\[ \begin{vmatrix} 1 + \sin^2 \theta & \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & 1 + \cos^2 \theta & 4\sin 4\theta \\ \sin^2 \theta & \cos^2 \theta & 1 + 4\sin 4\theta \end{vmatrix} = 0 \]
is:
AP EAPCET - 2025
AP EAPCET
Mathematics
Matrices
The general solution of the differential equation \((1 + \sin^2 x) \, \frac{dy}{dx} + \sin 2x = 0\) is?
AP EAPCET - 2025
AP EAPCET
Mathematics
Differential Equations
Evaluate \[ \int \frac{1}{x^4 + 1} \, dx = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Integration
Evaluate \[ \int_0^\pi \left( \sin^3 x \cos^3 x + \sin^4 x \cos^4 x + \sin^3 x \cos^3 x \right) dx = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Limits and Exponential Functions
Evaluate \[ \lim_{n \to \infty} \frac{1}{2n} \left( \sin \frac{\pi}{2n} + \sin \frac{\pi}{n} + \sin \frac{2\pi}{2n} + \dots \right) = ? \]
AP EAPCET - 2025
AP EAPCET
Mathematics
Differentiation
Prev
1
...
103
104
105
106
107
...
1054
Next