We use the formula for the magnitude of the sum of vectors: \[ |\mathbf{A} + \mathbf{B}|^2 = |\mathbf{A}|^2 + |\mathbf{B}|^2 + 2 (\mathbf{A} \cdot \mathbf{B}). \] Define: \[ \mathbf{A} = \mathbf{a}, \quad \mathbf{B} = 2\mathbf{b}. \] Step 1: Compute \( |\mathbf{B}| \). \[ |\mathbf{B}| = |2\mathbf{b}| = 2 |\mathbf{b}| = 2(3) = 6. \] Step 2: Compute \( \mathbf{A} \cdot \mathbf{B} \). \[ \mathbf{A} \cdot \mathbf{B} = \mathbf{a} \cdot (2\mathbf{b}) = 2 (\mathbf{a} \cdot \mathbf{b}) = 2(4) = 8. \] Step 3: Compute \( |\mathbf{A} + \mathbf{B}| \). \[ |\mathbf{a} + 2\mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{B}|^2 + 2 (\mathbf{a} \cdot \mathbf{B}). \] Substituting values: \[ |\mathbf{a} + 2\mathbf{b}|^2 = 2^2 + 6^2 + 2(8). \] \[ = 4 + 36 + 16 = 56. \] Step 4: Take the square root. \[ |\mathbf{a} + 2\mathbf{b}| = \sqrt{56} = 2\sqrt{14}. \] Thus, the final answer is: \[ |\mathbf{a} + 2\mathbf{b}| = 2\sqrt{14}. \]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).