We use the formula for the magnitude of the sum of vectors: \[ |\mathbf{A} + \mathbf{B}|^2 = |\mathbf{A}|^2 + |\mathbf{B}|^2 + 2 (\mathbf{A} \cdot \mathbf{B}). \] Define: \[ \mathbf{A} = \mathbf{a}, \quad \mathbf{B} = 2\mathbf{b}. \] Step 1: Compute \( |\mathbf{B}| \). \[ |\mathbf{B}| = |2\mathbf{b}| = 2 |\mathbf{b}| = 2(3) = 6. \] Step 2: Compute \( \mathbf{A} \cdot \mathbf{B} \). \[ \mathbf{A} \cdot \mathbf{B} = \mathbf{a} \cdot (2\mathbf{b}) = 2 (\mathbf{a} \cdot \mathbf{b}) = 2(4) = 8. \] Step 3: Compute \( |\mathbf{A} + \mathbf{B}| \). \[ |\mathbf{a} + 2\mathbf{b}|^2 = |\mathbf{a}|^2 + |\mathbf{B}|^2 + 2 (\mathbf{a} \cdot \mathbf{B}). \] Substituting values: \[ |\mathbf{a} + 2\mathbf{b}|^2 = 2^2 + 6^2 + 2(8). \] \[ = 4 + 36 + 16 = 56. \] Step 4: Take the square root. \[ |\mathbf{a} + 2\mathbf{b}| = \sqrt{56} = 2\sqrt{14}. \] Thus, the final answer is: \[ |\mathbf{a} + 2\mathbf{b}| = 2\sqrt{14}. \]

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?