To solve the problem involving square matrices \( A \) and \( B \) of order \( m \) with the condition \( A^2 - B^2 = (A - B)(A + B) \), let's explore each step.
Recall the algebraic identity for the difference of squares:
\( A^2 - B^2 = (A - B)(A + B) \).
This is true generally for matrices under the assumption that multiplication is commutative, but matrices don't generally commute. However, since the equation is given as a fact, it signals that either the matrices are commutative or some specific condition holds.
The structure suggests possible simplifications:
One simplification could be commutativity: if \( A \) and \( B \) commute, i.e., \( AB = BA \), the equation holds as is.
The trivial solution: if \( A = B \), then both sides evaluate to \( 0 \) as \( A - B = 0 \).
In this setup, the condition \( A = B \) always holds true under the given identity, irrespective of commutativity assumptions.
Thus, from the options provided, the correct answer is:
\( A = B \).
An amount of ₹ 10,000 is put into three investments at the rate of 10%, 12% and 15% per annum. The combined annual income of all three investments is ₹ 1,310, however, the combined annual income of the first and second investments is ₹ 190 short of the income from the third. Use matrix method and find the investment amount in each at the beginning of the year.
Rupal, Shanu and Trisha were partners in a firm sharing profits and losses in the ratio of 4:3:1. Their Balance Sheet as at 31st March, 2024 was as follows:
(i) Trisha's share of profit was entirely taken by Shanu.
(ii) Fixed assets were found to be undervalued by Rs 2,40,000.
(iii) Stock was revalued at Rs 2,00,000.
(iv) Goodwill of the firm was valued at Rs 8,00,000 on Trisha's retirement.
(v) The total capital of the new firm was fixed at Rs 16,00,000 which was adjusted according to the new profit sharing ratio of the partners. For this necessary cash was paid off or brought in by the partners as the case may be.
Prepare Revaluation Account and Partners' Capital Accounts.
On the basis of the following hypothetical data, calculate the percentage change in Real Gross Domestic Product (GDP) in the year 2022 – 23, using 2020 – 21 as the base year.
Year | Nominal GDP | Nominal GDP (Adjusted to Base Year Price) |
2020–21 | 3,000 | 5,000 |
2022–23 | 4,000 | 6,000 |