To solve the problem, we are given:
\[
y = \log \left( \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 \right)
\]
We are to prove:
\[
x(x + 1)^2 y_2 + (x + 1)^2 y_1 = 2
\]
1. Simplify the Expression:
Use the identity \( \log(a^2) = 2\log a \):
\[
y = 2 \log \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)
\]
2. Let’s Define:
Let \( u = \sqrt{x} + \frac{1}{\sqrt{x}} \)
Then \( y = 2 \log u \)
3. Differentiate First Time (First Derivative \( y_1 \)):
Using the chain rule:
\[
\frac{dy}{dx} = 2 \cdot \frac{1}{u} \cdot \frac{du}{dx}
\]
Now compute \( \frac{du}{dx} \):
\[
\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right) = \frac{1}{2\sqrt{x}} - \frac{1}{2x\sqrt{x}} = \frac{1}{2\sqrt{x}} \left( 1 - \frac{1}{x} \right)
\]
So:
\[
y_1 = \frac{2}{\sqrt{x} + \frac{1}{\sqrt{x}}} \cdot \frac{1}{2\sqrt{x}} \left(1 - \frac{1}{x} \right)
\]
Simplify numerator and denominator: Let’s instead substitute back and simplify using an alternate route.
Alternate Simpler Substitution:
\[
y = \log \left( \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^2 \right) = \log \left( x + \frac{1}{x} + 2 \right) = \log \left( \frac{(x + 1)^2}{x} \right)
\]
So:
\[
y = \log \left( \frac{(x + 1)^2}{x} \right) = \log (x + 1)^2 - \log x = 2 \log(x + 1) - \log x
\]
4. First Derivative \( y_1 = \frac{dy}{dx} \):
\[
y_1 = 2 \cdot \frac{1}{x + 1} - \frac{1}{x}
\]
5. Second Derivative \( y_2 = \frac{d^2y}{dx^2} \):
\[
y_2 = \frac{d}{dx} \left( \frac{2}{x + 1} - \frac{1}{x} \right) = -\frac{2}{(x + 1)^2} + \frac{1}{x^2}
\]
6. Substitute in the Given Expression:
We are to show:
\[
x(x + 1)^2 y_2 + (x + 1)^2 y_1 = 2
\]
Substitute \( y_1 \) and \( y_2 \):
\[ x(x + 1)^2 \left( -\frac{2}{(x + 1)^2} + \frac{1}{x^2} \right) + (x + 1)^2 \left( \frac{2}{x + 1} - \frac{1}{x} \right) \]
Simplify both terms:
First term:
\[
x(x + 1)^2 \left( -\frac{2}{(x + 1)^2} + \frac{1}{x^2} \right) = x \left( -2 + \frac{(x + 1)^2}{x^2} \right)
\]
Second term:
\[
(x + 1)^2 \left( \frac{2}{x + 1} - \frac{1}{x} \right) = (x + 1) \cdot 2 - \frac{(x + 1)^2}{x}
\]
Add both together: \[ x \left( -2 + \frac{(x + 1)^2}{x^2} \right) + \left[ 2(x + 1) - \frac{(x + 1)^2}{x} \right] \]
Combine the expressions: \[ -2x + \frac{(x + 1)^2}{x} + 2(x + 1) - \frac{(x + 1)^2}{x} = -2x + 2(x + 1) = -2x + 2x + 2 = 2 \]
Final Answer:
\[
x(x + 1)^2 y_2 + (x + 1)^2 y_1 = 2 \quad \text{is proved.}
\]
A carpenter needs to make a wooden cuboidal box, closed from all sides, which has a square base and fixed volume. Since he is short of the paint required to paint the box on completion, he wants the surface area to be minimum.
On the basis of the above information, answer the following questions :
Find \( \frac{dS}{dx} \).
Find the interval in which $f(x) = x + \frac{1}{x}$ is always increasing, $x \neq 0$.