Step 1: Evaluate the given integral.
\[
\int_a^b x^3 dx = \left[ \frac{x^4}{4} \right]_a^b = 0.
\]
\[
\frac{b^4}{4} - \frac{a^4}{4} = 0.
\]
\[
b^4 = a^4.
\]
\[
b = -a \quad \text{(since \( b \neq a \))}.
\]
Step 2: Solve for \( a \) and \( b \).
\[
\int_a^b x^2 dx = \left[ \frac{x^3}{3} \right]_a^b = \frac{2}{3}.
\]
Substituting \( b = -a \):
\[
\frac{(-a)^3}{3} - \frac{a^3}{3} = \frac{2}{3}.
\]
\[
\frac{-a^3}{3} - \frac{a^3}{3} = \frac{2}{3}.
\]
\[
\frac{-2a^3}{3} = \frac{2}{3}.
\]
\[
-2a^3 = 2.
\]
\[
a^3 = -1.
\]
\[
a = -1, \quad b = 1.
\]
Final Answer: \( a = -1, b = 1 \).