The projection of a vector \( \mathbf{a} \) on a vector \( \mathbf{b} \) is given by: \[ \text{Projection of } \mathbf{a} \text{ on } \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} \] We are given that the projection is 4 units, so: \[ \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{b}|} = 4 \] First, calculate \( \mathbf{a} \cdot \mathbf{b} \): \[ \mathbf{a} \cdot \mathbf{b} = \alpha \cdot 2 + 1 \cdot 6 + 4 \cdot 3 = 2\alpha + 6 + 12 = 2\alpha + 18 \] Next, calculate \( |\mathbf{b}| \): \[ |\mathbf{b}| = \sqrt{2^2 + 6^2 + 3^2} = \sqrt{4 + 36 + 9} = \sqrt{49} = 7 \] Now substitute into the projection formula: \[ \frac{2\alpha + 18}{7} = 4 \] Solving for \( \alpha \): \[ 2\alpha + 18 = 28 \quad \Rightarrow \quad 2\alpha = 10 \quad \Rightarrow \quad \alpha = 5 \]
If vector \( \mathbf{a} = 3 \hat{i} + 2 \hat{j} - \hat{k} \) \text{ and } \( \mathbf{b} = \hat{i} - \hat{j} + \hat{k} \), then which of the following is correct?
Let \( \vec{a} = 2\hat{i} - 3\hat{j} + \hat{k} \), \( \vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k} \) and a vector \( \vec{c} \) be such that \[ (\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k} \] and \[ \vec{a} \cdot \vec{c} = 3. \] If \( \vec{b} \times \vec{c} = \vec{d} \), then find \( |\vec{a} \cdot \vec{d}| \).