To solve the problem, we are given two skew lines in symmetric form. We are to find the shortest distance between them.
1. Identify Direction Vectors and Points on Each Line:
First line:
\[
\frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z - 9}{-3}
\]
Direction vector: \( \mathbf{d_1} = \langle 2, 1, -3 \rangle \)
Point on the line: set the common ratio = 0 → \( x = -1, y = 1, z = 9 \)
So, point \( A = (-1, 1, 9) \)
Second line:
\[
\frac{x - 3}{2} = \frac{y + 15}{-7} = \frac{z - 9}{5}
\]
Direction vector: \( \mathbf{d_2} = \langle 2, -7, 5 \rangle \)
Point on the line: set the common ratio = 0 → \( x = 3, y = -15, z = 9 \)
So, point \( B = (3, -15, 9) \)
2. Vector Joining Points A and B:
\[
\vec{AB} = \vec{B} - \vec{A} = \langle 3 - (-1), -15 - 1, 9 - 9 \rangle = \langle 4, -16, 0 \rangle
\]
3. Use the Formula for Shortest Distance Between Skew Lines:
\[
\text{Distance} = \frac{|\vec{AB} \cdot (\vec{d_1} \times \vec{d_2})|}{|\vec{d_1} \times \vec{d_2}|}
\]
4. Compute the Cross Product \( \vec{d_1} \times \vec{d_2} \):
\[
\vec{d_1} = \langle 2, 1, -3 \rangle,\quad \vec{d_2} = \langle 2, -7, 5 \rangle
\]
\[
\vec{d_1} \times \vec{d_2} =
\begin{vmatrix}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
2 & 1 & -3 \\
2 & -7 & 5
\end{vmatrix}
= \mathbf{i}(1 \cdot 5 - (-3) \cdot (-7)) - \mathbf{j}(2 \cdot 5 - (-3) \cdot 2) + \mathbf{k}(2 \cdot (-7) - 1 \cdot 2)
\]
\[
= \mathbf{i}(5 - 21) - \mathbf{j}(10 + 6) + \mathbf{k}(-14 - 2) = \langle -16, -16, -16 \rangle
\]
5. Compute Dot Product \( \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) \):
\[
\vec{AB} = \langle 4, -16, 0 \rangle,\quad \vec{d_1} \times \vec{d_2} = \langle -16, -16, -16 \rangle
\]
\[
\vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = 4 \cdot (-16) + (-16) \cdot (-16) + 0 \cdot (-16) = -64 + 256 + 0 = 192
\]
6. Magnitude of the Cross Product:
\[
|\vec{d_1} \times \vec{d_2}| = \sqrt{(-16)^2 + (-16)^2 + (-16)^2} = \sqrt{3 \cdot 256} = \sqrt{768} = 16\sqrt{3}
\]
7. Final Calculation:
\[
\text{Distance} = \frac{192}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3}
\]
Final Answer:
The shortest distance between the lines is \( \boxed{4\sqrt{3}} \) units.
Analyse the characters of William Douglas from ‘Deep Water’ and Mukesh from ‘Lost Spring’ in terms of their determination and will power in pursuing their goals.
Convert Propanoic acid to Ethane