Question:

Find the shortest distance between the lines: \[ \frac{x+1}{2} = \frac{y-1}{1} = \frac{z-9}{-3} \] and \[ \frac{x-3}{2} = \frac{y+15}{-7} = \frac{z-9}{5}. \]

Show Hint

For skew lines, use the formula \( D = \frac{|(\mathbf{Q} - \mathbf{P}) \cdot (\mathbf{d_1} \times \mathbf{d_2})|}{|\mathbf{d_1} \times \mathbf{d_2}|} \).
Updated On: May 25, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

To solve the problem, we are given two skew lines in symmetric form. We are to find the shortest distance between them.

1. Identify Direction Vectors and Points on Each Line:

First line:
\[ \frac{x + 1}{2} = \frac{y - 1}{1} = \frac{z - 9}{-3} \] Direction vector: \( \mathbf{d_1} = \langle 2, 1, -3 \rangle \)
Point on the line: set the common ratio = 0 → \( x = -1, y = 1, z = 9 \)
So, point \( A = (-1, 1, 9) \)

Second line:
\[ \frac{x - 3}{2} = \frac{y + 15}{-7} = \frac{z - 9}{5} \] Direction vector: \( \mathbf{d_2} = \langle 2, -7, 5 \rangle \)
Point on the line: set the common ratio = 0 → \( x = 3, y = -15, z = 9 \)
So, point \( B = (3, -15, 9) \)

2. Vector Joining Points A and B:
\[ \vec{AB} = \vec{B} - \vec{A} = \langle 3 - (-1), -15 - 1, 9 - 9 \rangle = \langle 4, -16, 0 \rangle \]

3. Use the Formula for Shortest Distance Between Skew Lines:
\[ \text{Distance} = \frac{|\vec{AB} \cdot (\vec{d_1} \times \vec{d_2})|}{|\vec{d_1} \times \vec{d_2}|} \]

4. Compute the Cross Product \( \vec{d_1} \times \vec{d_2} \):
\[ \vec{d_1} = \langle 2, 1, -3 \rangle,\quad \vec{d_2} = \langle 2, -7, 5 \rangle \] \[ \vec{d_1} \times \vec{d_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -3 \\ 2 & -7 & 5 \end{vmatrix} = \mathbf{i}(1 \cdot 5 - (-3) \cdot (-7)) - \mathbf{j}(2 \cdot 5 - (-3) \cdot 2) + \mathbf{k}(2 \cdot (-7) - 1 \cdot 2) \] \[ = \mathbf{i}(5 - 21) - \mathbf{j}(10 + 6) + \mathbf{k}(-14 - 2) = \langle -16, -16, -16 \rangle \]

5. Compute Dot Product \( \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) \):
\[ \vec{AB} = \langle 4, -16, 0 \rangle,\quad \vec{d_1} \times \vec{d_2} = \langle -16, -16, -16 \rangle \] \[ \vec{AB} \cdot (\vec{d_1} \times \vec{d_2}) = 4 \cdot (-16) + (-16) \cdot (-16) + 0 \cdot (-16) = -64 + 256 + 0 = 192 \]

6. Magnitude of the Cross Product:
\[ |\vec{d_1} \times \vec{d_2}| = \sqrt{(-16)^2 + (-16)^2 + (-16)^2} = \sqrt{3 \cdot 256} = \sqrt{768} = 16\sqrt{3} \]

7. Final Calculation:
\[ \text{Distance} = \frac{192}{16\sqrt{3}} = \frac{12}{\sqrt{3}} = 4\sqrt{3} \]

Final Answer:
The shortest distance between the lines is \( \boxed{4\sqrt{3}} \) units.

Was this answer helpful?
3
0

Questions Asked in CBSE CLASS XII exam

View More Questions