The right hand and left hand limit of the functionf(x) = \(\left\{ \begin{aligned} & \frac{e^{1/x}-1}{e^{1/x}+1}\ \ ,\ \ \text{if x}\ne0 \\ & \ \ \ \ \ \ 0 \ \ \ \ \ \ \ \ ,\ \ \text{if x = 0} \end{aligned} \right.\) are respectively
If f(x) = \(\left\{ \begin{aligned} & \frac{1-\cos Kx}{x\sin x} ,\ \ \text{if x}\neq0 \\ &\ \ \ \ \ \ \ \frac{1}{2}\ \ \ \ \ \ \ \ \ ,\ \ \ \text{if x=0} \end{aligned} \right.\) is continuous at x = 0, then the value of K is
If f(x) =
then