If A is a square matrix of order 3 and |A| = 5, then we need to find |A adj(A)|.
We know that \(A \cdot adj(A) = |A|I\), where I is the identity matrix.
So, |A adj(A)| = ||A|I|
Since A is of order 3, \(|A| = 5\), and I is the 3x3 identity matrix:
\(|A adj(A)| = |5I| = | \begin{pmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{pmatrix}|\)
\(|5I| = 5^3 |I| = 5^3 (1) = 125\)
Therefore, |A adj(A)| = 125.
Thus, the correct option is (B) 125.
Step 1: Property of Determinant
For a square matrix $ A $ of order $ n $, the following property holds:
$$ |A \, \text{adj}(A)| = |A| \times |\text{adj}(A)| $$
For an $ n \times n $ matrix, the determinant of the adjugate matrix $ \text{adj}(A) $ is related to $ |A| $ by the formula:
$$ |\text{adj}(A)| = |A|^{n-1} $$
For a matrix of order 3, $ n = 3 $, so:
$$ |\text{adj}(A)| = |A|^2 $$
Step 2: Calculate $ |A \, \text{adj}(A)| $
Given $ |A| = 5 $, we find:
$$ |\text{adj}(A)| = 5^2 = 25 $$
Now, using the property:
$$ |A \, \text{adj}(A)| = |A| \times |\text{adj}(A)| = 5 \times 25 = 125 $$
Conclusion: The value of $ |A \, \text{adj}(A)| $ is 125.
Let \( a \in \mathbb{R} \) and \( A \) be a matrix of order \( 3 \times 3 \) such that \( \det(A) = -4 \) and \[ A + I = \begin{bmatrix} 1 & a & 1 \\ 2 & 1 & 0 \\ a & 1 & 2 \end{bmatrix} \] where \( I \) is the identity matrix of order \( 3 \times 3 \).
If \( \det\left( (a + 1) \cdot \text{adj}\left( (a - 1) A \right) \right) \) is \( 2^m 3^n \), \( m, n \in \{ 0, 1, 2, \dots, 20 \} \), then \( m + n \) is equal to:
If $ y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\27 & 28 & 27 \\1 & 1 & 1 \end{vmatrix} $, $ x \in \mathbb{R} $, then $ \frac{d^2y}{dx^2} + y $ is equal to
Let I be the identity matrix of order 3 × 3 and for the matrix $ A = \begin{pmatrix} \lambda & 2 & 3 \\ 4 & 5 & 6 \\ 7 & -1 & 2 \end{pmatrix} $, $ |A| = -1 $. Let B be the inverse of the matrix $ \text{adj}(A \cdot \text{adj}(A^2)) $. Then $ |(\lambda B + I)| $ is equal to _______
Let $A = \{ z \in \mathbb{C} : |z - 2 - i| = 3 \}$, $B = \{ z \in \mathbb{C} : \text{Re}(z - iz) = 2 \}$, and $S = A \cap B$. Then $\sum_{z \in S} |z|^2$ is equal to
In a practical examination, the following pedigree chart was given as a spotter for identification. The students identify the given pedigree chart as 