We need to find the limit: \(\lim_{x \to 0} \frac{\tan x}{\sqrt{2x+4} - 2}\)
We can rationalize the denominator by multiplying by the conjugate:
\(\lim_{x \to 0} \frac{\tan x}{\sqrt{2x+4} - 2} \cdot \frac{\sqrt{2x+4} + 2}{\sqrt{2x+4} + 2}\)
\(\implies \lim_{x \to 0} \frac{\tan x (\sqrt{2x+4} + 2)}{(2x+4) - 4}\)
\(\implies \lim_{x \to 0} \frac{\tan x (\sqrt{2x+4} + 2)}{2x}\)
We can rewrite this as: \(\lim_{x \to 0} \frac{\tan x}{x} \cdot \frac{\sqrt{2x+4} + 2}{2}\)
We know that \(\lim_{x \to 0} \frac{\tan x}{x} = 1\), so we have:
\(\implies \lim_{x \to 0} 1 \cdot \frac{\sqrt{2x+4} + 2}{2}\)
Now we can substitute x = 0:
\(\implies 1 \cdot \frac{\sqrt{2(0)+4} + 2}{2}\)
\(\implies \frac{\sqrt{4} + 2}{2}\)
\(\implies \frac{2 + 2}{2}\)
\(\implies \frac{4}{2}\)
\(\implies 2\)
Therefore, the correct option is (A) 2.