Given equation:
$$ \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $$
This means that matrix $ A $ is the inverse of the matrix $ \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} $.
Step 1: Find the inverse of the matrix $ \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} $.
The formula to find the inverse of a 2x2 matrix $ \begin{pmatrix} a & b \\ c & d \end{pmatrix} $ is:
$$ \text{Inverse} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} $$
For the matrix $ \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} $, we have:
$ a = 2 $, $ b = 1 $, $ c = 3 $, $ d = 2 $
The determinant $ ad - bc = (2)(2) - (1)(3) = 4 - 3 = 1 $.
Thus, the inverse is:
$$ \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} $$
Step 2: Conclusion
The matrix $ A $ is:
$$ A = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} $$
Answer: (B) $ \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} $.
If \(\begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix} A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\), then we need to find the matrix A.
Let \(M = \begin{pmatrix} 2 & 1 \\ 3 & 2 \end{pmatrix}\).
Then we have \(MA = I\), where I is the identity matrix. This implies that \(A = M^{-1}\).
To find the inverse of M, we use the formula:
\(M^{-1} = \frac{1}{det(M)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}\), where \(M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}\).
The determinant of M is \(det(M) = (2)(2) - (1)(3) = 4 - 3 = 1\).
Therefore, \(A = M^{-1} = \frac{1}{1} \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix} = \begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}\).
Thus, the correct option is (B) \(\begin{pmatrix} 2 & -1 \\ -3 & 2 \end{pmatrix}\).