We need to find the value of \(\cos(\sin^{-1}(\frac{\pi}{3}) + \cos^{-1}(\frac{\pi}{3}))\).
First, note that the domain of both \(\sin^{-1}(x)\) and \(\cos^{-1}(x)\) is \([-1, 1]\). However, \(\frac{\pi}{3} \approx \frac{3.14}{3} > 1\). Therefore, \(\sin^{-1}(\frac{\pi}{3})\) and \(\cos^{-1}(\frac{\pi}{3})\) are not defined.
Since \(\sin^{-1}(\frac{\pi}{3})\) and \(\cos^{-1}(\frac{\pi}{3})\) do not exist, the entire expression does not exist.
Thus, the correct option is (D) Does not exist.
\[ \cos\left( \sin^{-1}\left( \frac{\pi}{3} \right) + \cos^{-1}\left( \frac{\pi}{3} \right) \right) \]
- \( \sin^{-1}\left( \frac{\pi}{3} \right) \) and \( \cos^{-1}\left( \frac{\pi}{3} \right) \) are angles whose sine and cosine are \( \frac{\pi}{3} \), respectively.
However, the values of \( \sin^{-1}(x) \) and \( \cos^{-1}(x) \) are defined only for arguments between \(-1\) and \( 1\).
Since \( \frac{\pi}{3} \approx 1.047 \) is greater than 1, neither \( \sin^{-1} \left( \frac{\pi}{3} \right) \) nor \( \cos^{-1} \left( \frac{\pi}{3} \right) \) is defined.
The value does not exist.
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.
Match the following:
In the following, \( [x] \) denotes the greatest integer less than or equal to \( x \). 
Choose the correct answer from the options given below:
For x < 0:
f(x) = ex + ax
For x ≥ 0:
f(x) = b(x - 1)2