Question:

If A = (001010100)\begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \\ \end{pmatrix}, then A4 is equal to

Updated On: Apr 2, 2025
  • A
  • 2A
  • I
  • 4A
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Given A=(001010100)A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}, we need to find A4A^4.

First, let's find A2A^2:

A2=AA=(001010100)(001010100)=(100010001)=IA^2 = A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I

Now, let's find A4A^4:

A4=(A2)2=I2=II=I=(100010001)A^4 = (A^2)^2 = I^2 = I \cdot I = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}

Thus, A4=IA^4 = I.

Therefore, the correct option is (C) I.

Was this answer helpful?
0
0

Top Questions on Matrices

View More Questions