Given A=(001010100)A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}A=001010100, we need to find A4A^4A4.
First, let's find A2A^2A2:
A2=A⋅A=(001010100)(001010100)=(100010001)=IA^2 = A \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = IA2=A⋅A=001010100001010100=100010001=I
Now, let's find A4A^4A4:
A4=(A2)2=I2=I⋅I=I=(100010001)A^4 = (A^2)^2 = I^2 = I \cdot I = I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}A4=(A2)2=I2=I⋅I=I=100010001
Thus, A4=IA^4 = IA4=I.
Therefore, the correct option is (C) I.