If \(2^x + 2^y = 2^{x+y}\), then we need to find \(\frac{dy}{dx}\).
Differentiate both sides with respect to x using implicit differentiation:
\(\frac{d}{dx}(2^x) + \frac{d}{dx}(2^y) = \frac{d}{dx}(2^{x+y})\)
Using the chain rule and the derivative of \(a^x\) is \(a^x \ln a\):
\(2^x \ln 2 + 2^y \ln 2 \frac{dy}{dx} = 2^{x+y} \ln 2 (1 + \frac{dy}{dx})\)
Divide by \(\ln 2\):
\(2^x + 2^y \frac{dy}{dx} = 2^{x+y} (1 + \frac{dy}{dx})\)
\(2^x + 2^y \frac{dy}{dx} = 2^{x+y} + 2^{x+y} \frac{dy}{dx}\)
Isolate \(\frac{dy}{dx}\):
\(2^y \frac{dy}{dx} - 2^{x+y} \frac{dy}{dx} = 2^{x+y} - 2^x\)
\(\frac{dy}{dx} (2^y - 2^{x+y}) = 2^{x+y} - 2^x\)
\(\frac{dy}{dx} = \frac{2^{x+y} - 2^x}{2^y - 2^{x+y}}\)
Since \(2^x + 2^y = 2^{x+y}\), substitute \(2^{x+y}\) in the above expression:
\(\frac{dy}{dx} = \frac{(2^x + 2^y) - 2^x}{2^y - (2^x + 2^y)}\)
\(\frac{dy}{dx} = \frac{2^y}{ -2^x}\)
\(\frac{dy}{dx} = -2^{y-x}\)
Therefore, the correct option is (B) \(-2^{y-x}\).
Given $ 2^x + 2^y = 2^{x+y} $, we want to find $ \frac{dy}{dx} $.
Differentiating with respect to $ x $, we have:
$$ 2^x \ln 2 + 2^y \ln 2 \frac{dy}{dx} = 2^{x+y} \ln 2 (1 + \frac{dy}{dx}) $$
Dividing by $ \ln 2 $:
$$ 2^x + 2^y \frac{dy}{dx} = 2^{x+y} (1 + \frac{dy}{dx}) $$
Simplify:
$$ 2^x + 2^y \frac{dy}{dx} = 2^{x+y} + 2^{x+y} \frac{dy}{dx} $$
Rearrange terms:
$$ 2^y \frac{dy}{dx} - 2^{x+y} \frac{dy}{dx} = 2^{x+y} - 2^x $$
Factorize:
$$ (2^y - 2^{x+y}) \frac{dy}{dx} = 2^{x+y} - 2^x $$
Solve for $ \frac{dy}{dx} $:
$$ \frac{dy}{dx} = \frac{2^{x+y} - 2^x}{2^y - 2^{x+y}} $$
Since $ 2^{x+y} = 2^x + 2^y $, substitute this into the equation:
$$ \frac{dy}{dx} = \frac{2^x + 2^y - 2^x}{2^y - (2^x + 2^y)} $$
Simplify:
$$ \frac{dy}{dx} = \frac{2^y}{-2^x} = -2^{y-x} $$
A cylindrical tank of radius 10 cm is being filled with sugar at the rate of 100π cm3/s. The rate at which the height of the sugar inside the tank is increasing is:
If \(f(x) = \begin{cases} x^2 + 3x + a, & x \leq 1 bx + 2, & x>1 \end{cases}\), \(x \in \mathbb{R}\), is everywhere differentiable, then