If f(x) =
\[\begin{vmatrix} x^3-x & a+x & b+x \\ x-a & x^2-x & c+x \\ x-b & x-c & 0 \\ \end{vmatrix}\]then
The given function is:
$$ f(x) = \begin{vmatrix} x^3 - x & a + x & b + x \\ x - a & x^2 - x & c + x \\ x - b & x - c & 0 \end{vmatrix} $$
We need to determine the value of $ f(x) $ for specific values of $ x $.
Step 1: Evaluate the determinant when $ x = 0 $.
Substitute $ x = 0 $ into the matrix:
$$ f(0) = \begin{vmatrix} 0^3 - 0 & a + 0 & b + 0 \\ 0 - a & 0^2 - 0 & c + 0 \\ 0 - b & 0 - c & 0 \end{vmatrix} = \begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix} $$
Now, calculate the determinant of this 3x3 matrix. Using cofactor expansion along the first row:
$$ f(0) = 0 \cdot \begin{vmatrix} 0 & c \\ -c & 0 \end{vmatrix} - a \cdot \begin{vmatrix} -a & c \\ -b & 0 \end{vmatrix} + b \cdot \begin{vmatrix} -a & 0 \\ -b & -c \end{vmatrix} $$
The 2x2 determinants are calculated as follows:
$$ \begin{vmatrix} 0 & c \\ -c & 0 \end{vmatrix} = 0 \cdot 0 - (-c \cdot c) = c^2 $$ $$ \begin{vmatrix} -a & c \\ -b & 0 \end{vmatrix} = (-a)(0) - (c)(-b) = bc $$ $$ \begin{vmatrix} -a & 0 \\ -b & -c \end{vmatrix} = (-a)(-c) - (0)(-b) = ac $$
Substitute these values back into the determinant expression:
$$ f(0) = 0 - a(bc) + b(ac) $$ $$ f(0) = -abc + abc = 0 $$
Answer: (C) $ f(0) = 0 $.
We are given \(f(x) = \begin{vmatrix} x^3-x & a+x & b+x \\ x-a & x^2-x & c+x \\ x-b & x-c & 0 \end{vmatrix}\) and need to determine for which value of x, \(f(x) = 0\).
Let's try substituting x = 0:
\(f(0) = \begin{vmatrix} 0 & a & b \\ -a & 0 & c \\ -b & -c & 0 \end{vmatrix}\)
Expanding the determinant along the first row:
\(f(0) = 0 \cdot \begin{vmatrix} 0 & c \\ -c & 0 \end{vmatrix} - a \cdot \begin{vmatrix} -a & c \\ -b & 0 \end{vmatrix} + b \cdot \begin{vmatrix} -a & 0 \\ -b & -c \end{vmatrix}\)
\(f(0) = 0 - a(0 - (-bc)) + b(ac - 0)\)
\(f(0) = -abc + abc = 0\)
Therefore, \(f(0) = 0\).
Thus, the correct option is (C) f(0) = 0.
Let A be the set of 30 students of class XII in a school. Let f : A -> N, N is a set of natural numbers such that function f(x) = Roll Number of student x.
Give reasons to support your answer to (i).
Find the domain of the function \( f(x) = \cos^{-1}(x^2 - 4) \).