We need to find the right-hand limit and left-hand limit of the function:
\(f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}\)
Right-hand limit (x approaches 0 from the right):
\(\lim_{x \to 0^+} \frac{e^{1/x} - 1}{e^{1/x} + 1}\)
As \(x \to 0^+\), \(\frac{1}{x} \to \infty\), so \(e^{1/x} \to \infty\).
We can divide both the numerator and denominator by \(e^{1/x}\):
\(\lim_{x \to 0^+} \frac{1 - e^{-1/x}}{1 + e^{-1/x}}\)
As \(x \to 0^+\), \(\frac{1}{x} \to \infty\), so \(e^{-1/x} \to 0\).
\(\lim_{x \to 0^+} \frac{1 - 0}{1 + 0} = \frac{1}{1} = 1\)
Left-hand limit (x approaches 0 from the left):
\(\lim_{x \to 0^-} \frac{e^{1/x} - 1}{e^{1/x} + 1}\)
As \(x \to 0^-\), \(\frac{1}{x} \to -\infty\), so \(e^{1/x} \to 0\).
\(\lim_{x \to 0^-} \frac{0 - 1}{0 + 1} = \frac{-1}{1} = -1\)
So, the right-hand limit is 1 and the left-hand limit is -1.
Therefore, the correct option is (B) 1 and -1.
Prove that the function \( f(x) = |x| \) is continuous at \( x = 0 \) but not differentiable.
\[ f(x) = \begin{cases} x^2 + 2, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases} \]
is not continuous at \( x = 0 \).Is the function \( f(x) \) defined by
\[ f(x) = \begin{cases} x + 5, & \text{if } x \leq 1 \\ x - 5, & \text{if } x > 1 \end{cases} \]
continuous at \( x = 1 \)?