The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x – y = 3, respectively. If its orthocentre is
\((2, a),−\frac{1}{2}<a<2 \)
then p is equal to _______.

Slope of AH \(=\frac{a+2}{1}\)
Slope of BC\(=−\frac{1}{p}\)
∴ p = a + 2 …(i)
Coordinate of C \(=(\frac{18p−30}{p+1},\frac{15p−33}{p+1})\)
Slope of HC \(=\frac{\frac{15p−33}{p+1}−a}{\frac{18p−30}{p+1}−2}\)
\(=\frac{15p−33−(p−2)(p+1)}{18p−30−2p−2}\)
\(=\frac{16p−p^2−31}{16p−32}\)
\(∵ \frac{16p−p^2−31}{16p−32}×−2=−1\)
∴ p2 – 8p + 15 = 0
∴ p = 3 or 5
But if p = 5 then a = 3 not acceptable
∴ p = 3
So, the answer is 3.
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.