The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 15a and x – y = 3, respectively. If its orthocentre is
\((2, a),−\frac{1}{2}<a<2 \)
then p is equal to _______.
Slope of AH \(=\frac{a+2}{1}\)
Slope of BC\(=−\frac{1}{p}\)
∴ p = a + 2 …(i)
Coordinate of C \(=(\frac{18p−30}{p+1},\frac{15p−33}{p+1})\)
Slope of HC \(=\frac{\frac{15p−33}{p+1}−a}{\frac{18p−30}{p+1}−2}\)
\(=\frac{15p−33−(p−2)(p+1)}{18p−30−2p−2}\)
\(=\frac{16p−p^2−31}{16p−32}\)
\(∵ \frac{16p−p^2−31}{16p−32}×−2=−1\)
∴ p2 – 8p + 15 = 0
∴ p = 3 or 5
But if p = 5 then a = 3 not acceptable
∴ p = 3
So, the answer is 3.
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is