Let \(\begin{array}{l}A=\begin{bmatrix}1 & -1 \\2 & \alpha \\\end{bmatrix}\ \text{and}\ B=\begin{bmatrix}\beta & 1 \\1 & 0 \\\end{bmatrix},\alpha, \beta \in R\end{array}\).
Let \(α1\) be the value of α which satisfies
\(\begin{array}{l}(A + B)^2 =A^2 + \begin{bmatrix}2 & 2 \\2 & 2 \\\end{bmatrix}\end{array}\)
and \(α2\) be the value of α which satisfies
\(\begin{array}{l}\left(A + B\right)^2 = B^2.\end{array}\)
Then \(|α1 – α2|\) is equal to _________.