Let \(\vec{a}, \vec{b}, \vec{c}\)
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\), then \(|\vec{a}| + |\vec{b}| + |\vec{c}|\)| is equal to :
\(|\vec{a}| |\vec{b}| |\vec{c}| = 14\)
\(\vec{a} \land \vec{b} = \vec{b} \land \vec{c} = \vec{c} \land \vec{a} = \theta = \frac{2\pi}{3}\)
\(\vec{a} \cdot \vec{b} = -\frac{1}{2} |\vec{a}| |\vec{b}|\)
\(\vec{b} \cdot \vec{c} = -\frac{1}{2} |\vec{b}| |\vec{c}|\)
\(\vec{c} \cdot \vec{a} = -\frac{1}{2} |\vec{c}| |\vec{a}|\)
Now,
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\ \ \ ....(i)\)
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})|\vec{b}|^2\)
\(= \frac{1}{4} |\vec{b}|^2 |\vec{a}| |\vec{c}| + \frac{1}{2} |\vec{a}| |\vec{b}|^2 |\vec{c}|\)
\(= \frac{3}{4} |\vec{a}| |\vec{b}|^2 |\vec{c}|\) \(... (ii)\)
Similarly \((\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}|^2\) \(... (iii)\)
\((\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} |\vec{a}|^2 |\vec{b}| |\vec{c}|\) \(... (iv)\)
Substitute (ii),(iii),(iv) in (i)
\(\frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}| \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(\frac{3}{4} \times 14 \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(|\vec{a}| + |\vec{b}| + |\vec{c}| = 16\)
So, the correct answer is (C) : 16
Let $ P_n = \alpha^n + \beta^n $, $ n \in \mathbb{N} $. If $ P_{10} = 123,\ P_9 = 76,\ P_8 = 47 $ and $ P_1 = 1 $, then the quadratic equation having roots $ \alpha $ and $ \frac{1}{\beta} $ is:
Two blocks of masses \( m \) and \( M \), \( (M > m) \), are placed on a frictionless table as shown in figure. A massless spring with spring constant \( k \) is attached with the lower block. If the system is slightly displaced and released then \( \mu = \) coefficient of friction between the two blocks.
(A) The time period of small oscillation of the two blocks is \( T = 2\pi \sqrt{\dfrac{(m + M)}{k}} \)
(B) The acceleration of the blocks is \( a = \dfrac{kx}{M + m} \)
(\( x = \) displacement of the blocks from the mean position)
(C) The magnitude of the frictional force on the upper block is \( \dfrac{m\mu |x|}{M + m} \)
(D) The maximum amplitude of the upper block, if it does not slip, is \( \dfrac{\mu (M + m) g}{k} \)
(E) Maximum frictional force can be \( \mu (M + m) g \)
Choose the correct answer from the options given below:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \[ (\sin x \cos y)(f(2x + 2y) - f(2x - 2y)) = (\cos x \sin y)(f(2x + 2y) + f(2x - 2y)), \] for all \( x, y \in \mathbb{R}. \)
If \( f'(0) = \frac{1}{2} \), then the value of \( 24f''\left( \frac{5\pi}{3} \right) \) is:
The condition for coplanarity in the Cartesian form appears from the vector form.
Let's consider two points L (a1, b1, c1) & Q (a2, b2, c2) in the Cartesian plane,
Presuppose that there are two vectors q1 and q2. Their direction ratios are subjected by {x1, y1, z1}, and {x2, y2, z2} respectively.
The vector form of equation of the line in connection to L and Q can be stated as under:
LQ = (a2 – a1)i + (b2 – b1)j + (c2 – c1)k
Q1 = x1i + y1j + z1k
Q2 = x2i + y2j + z2k
For the derivation of the condition for coplanarity in vector form, we shall take into consideration the equations of two straight lines to be as stated below:
r1 = l1 + λq1
r2 = l2 + λq2
The condition for coplanarity in vector form is that the line in connection to the two points should be perpendicular to the product of the two vectors, q1 and q2.