Let \(\vec{a}, \vec{b}, \vec{c}\)
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\), then \(|\vec{a}| + |\vec{b}| + |\vec{c}|\)| is equal to :
To solve this problem, we first need to understand the relationship given by the condition:
(\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168
This expression can be simplified using the scalar triple product and vector identity properties. The given expression is three times the square of the area of the parallelogram formed by the vectors \vec{a}, \vec{b}, \vec{c}.
Based on the condition that the vectors are coplanar and the angles between any two of them are the same, this implies symmetry in terms of their magnitudes and angles.
Thus, let's assume:
The given product of magnitudes is:
|\vec{a}| \times |\vec{b}| \times |\vec{c}| = x^3 = 14
From which we can solve for x:
x = \sqrt[3]{14}
Let’s plug this back into the expression for the problem:
3 \times x^4 \sin^2 \theta = 168
Where \theta is the angle between each pair of vectors, and assuming the angle condition means:
Then:
\sin^2 \theta = (\frac{\sqrt{3}}{2})^2 = \frac{3}{4}
Substituting back:
3x^4 \times \frac{3}{4} = 168 \\ x^4 = \frac{168 \times 4}{9} = \frac{672}{9} = 74.67
And given x^3 = 14, solving for x:
|\vec{a}| + |\vec{b}| + |\vec{c}| = 3x
Approximating using x^4 = 75, we find:
x \approx \sqrt[3]{14} \approx 2.52
Thus:
3 \times x = 16 (approximately as 2.52 \times 3)
Therefore, the correct answer is:
\(|\vec{a}| |\vec{b}| |\vec{c}| = 14\)
\(\vec{a} \land \vec{b} = \vec{b} \land \vec{c} = \vec{c} \land \vec{a} = \theta = \frac{2\pi}{3}\)
\(\vec{a} \cdot \vec{b} = -\frac{1}{2} |\vec{a}| |\vec{b}|\)
\(\vec{b} \cdot \vec{c} = -\frac{1}{2} |\vec{b}| |\vec{c}|\)
\(\vec{c} \cdot \vec{a} = -\frac{1}{2} |\vec{c}| |\vec{a}|\)
Now,
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\ \ \ ....(i)\)
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})|\vec{b}|^2\)
\(= \frac{1}{4} |\vec{b}|^2 |\vec{a}| |\vec{c}| + \frac{1}{2} |\vec{a}| |\vec{b}|^2 |\vec{c}|\)
\(= \frac{3}{4} |\vec{a}| |\vec{b}|^2 |\vec{c}|\) \(... (ii)\)
Similarly \((\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}|^2\) \(... (iii)\)
\((\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} |\vec{a}|^2 |\vec{b}| |\vec{c}|\) \(... (iv)\)
Substitute (ii),(iii),(iv) in (i)
\(\frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}| \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(\frac{3}{4} \times 14 \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(|\vec{a}| + |\vec{b}| + |\vec{c}| = 16\)
So, the correct answer is (C) : 16
A solution of aluminium chloride is electrolyzed for 30 minutes using a current of 2A. The amount of the aluminium deposited at the cathode is _________
If \[ \int \frac{2x^2 + 5x + 9}{\sqrt{x^2 + x + 1}} \, dx = \sqrt{x^2 + x + 1} + \alpha \sqrt{x^2 + x + 1} + \beta \log_e \left( \left| x + \frac{1}{2} + \sqrt{x^2 + x + 1} \right| \right) + C, \] where \( C \) is the constant of integration, then \( \alpha + 2\beta \) is equal to ________________
The condition for coplanarity in the Cartesian form appears from the vector form.
Let's consider two points L (a1, b1, c1) & Q (a2, b2, c2) in the Cartesian plane,
Presuppose that there are two vectors q1 and q2. Their direction ratios are subjected by {x1, y1, z1}, and {x2, y2, z2} respectively.
The vector form of equation of the line in connection to L and Q can be stated as under:
LQ = (a2 – a1)i + (b2 – b1)j + (c2 – c1)k
Q1 = x1i + y1j + z1k
Q2 = x2i + y2j + z2k
For the derivation of the condition for coplanarity in vector form, we shall take into consideration the equations of two straight lines to be as stated below:
r1 = l1 + λq1
r2 = l2 + λq2
The condition for coplanarity in vector form is that the line in connection to the two points should be perpendicular to the product of the two vectors, q1 and q2.