Let \(\vec{a}, \vec{b}, \vec{c}\)
be three coplanar concurrent vectors such that angles between any two of them is same. If the product of their magnitudes is 14 and
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\), then \(|\vec{a}| + |\vec{b}| + |\vec{c}|\)| is equal to :
\(|\vec{a}| |\vec{b}| |\vec{c}| = 14\)
\(\vec{a} \land \vec{b} = \vec{b} \land \vec{c} = \vec{c} \land \vec{a} = \theta = \frac{2\pi}{3}\)
\(\vec{a} \cdot \vec{b} = -\frac{1}{2} |\vec{a}| |\vec{b}|\)
\(\vec{b} \cdot \vec{c} = -\frac{1}{2} |\vec{b}| |\vec{c}|\)
\(\vec{c} \cdot \vec{a} = -\frac{1}{2} |\vec{c}| |\vec{a}|\)
Now,
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) + (\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) + (\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = 168\ \ \ ....(i)\)
\((\vec{a} \times \vec{b}) \cdot (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{b})(\vec{b} \cdot \vec{c}) - (\vec{a} \cdot \vec{c})|\vec{b}|^2\)
\(= \frac{1}{4} |\vec{b}|^2 |\vec{a}| |\vec{c}| + \frac{1}{2} |\vec{a}| |\vec{b}|^2 |\vec{c}|\)
\(= \frac{3}{4} |\vec{a}| |\vec{b}|^2 |\vec{c}|\) \(... (ii)\)
Similarly \((\vec{b} \times \vec{c}) \cdot (\vec{c} \times \vec{a}) = \frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}|^2\) \(... (iii)\)
\((\vec{c} \times \vec{a}) \cdot (\vec{a} \times \vec{b}) = \frac{3}{4} |\vec{a}|^2 |\vec{b}| |\vec{c}|\) \(... (iv)\)
Substitute (ii),(iii),(iv) in (i)
\(\frac{3}{4} |\vec{a}| |\vec{b}| |\vec{c}| \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(\frac{3}{4} \times 14 \left[ |\vec{a}| + |\vec{b}| + |\vec{c}| \right] = 168\)
\(|\vec{a}| + |\vec{b}| + |\vec{c}| = 16\)
So, the correct answer is (C) : 16
The portion of the line \( 4x + 5y = 20 \) in the first quadrant is trisected by the lines \( L_1 \) and \( L_2 \) passing through the origin. The tangent of an angle between the lines \( L_1 \) and \( L_2 \) is:
The condition for coplanarity in the Cartesian form appears from the vector form.
Let's consider two points L (a1, b1, c1) & Q (a2, b2, c2) in the Cartesian plane,
Presuppose that there are two vectors q1 and q2. Their direction ratios are subjected by {x1, y1, z1}, and {x2, y2, z2} respectively.
The vector form of equation of the line in connection to L and Q can be stated as under:
LQ = (a2 – a1)i + (b2 – b1)j + (c2 – c1)k
Q1 = x1i + y1j + z1k
Q2 = x2i + y2j + z2k
For the derivation of the condition for coplanarity in vector form, we shall take into consideration the equations of two straight lines to be as stated below:
r1 = l1 + λq1
r2 = l2 + λq2
The condition for coplanarity in vector form is that the line in connection to the two points should be perpendicular to the product of the two vectors, q1 and q2.