The number of solutions of |cos x| = sinx, such that –4π ≤ x ≤ 4π is :
Number of solutions of the equation |cosx| = sinx for x ∈ [-4π, 4π] will be equal to 4 times the number of solutions of the same equation for x∈[0, 2π].
Graphs of y = |cosx| and y = sinx are as shown below.
Hence, two solutions of a given equation in [0, 2π]
⇒ Total of 8 solutions in [–4π, 4π].
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a