
\(CD = \sqrt{(10+x^2)^2-(10-x^2)^2}\)
= \(2√10|x|\)
Area
= \(\frac{1}{2} \times CD \times AB\)
= \(\frac{1}{2} \times 2\sqrt{10}|x| (20-2x^2)\)
\(A = \sqrt{10}|x| (10-x^2)\)
\(\frac{dA}{dx} = \sqrt{10}\frac{ |x|}{x} (10-x^2)+ \sqrt{10}|x| (-2x) = 0\)
\(⇒ 10 – x^2 = 2x^2\)
\(3x^2 = 10\)
\(x = k\)
\(3k^2 = 10\)
Hence, the correct option is (C): \(10\)

In the adjoining figure, \( AP = 1 \, \text{cm}, \ BP = 2 \, \text{cm}, \ AQ = 1.5 \, \text{cm}, \ AC = 4.5 \, \text{cm} \) Prove that \( \triangle APQ \sim \triangle ABC \).
Hence, find the length of \( PQ \), if \( BC = 3.6 \, \text{cm} \).

Nature of compounds TeO₂ and TeH₂ is___________ and ______________respectively.