Question:

The lengths of the sides of a triangle are 10 + x2, 10 + x2 and 20 – 2x2. If for x = k, the area of the triangle is maximum, then 3k2 is equal to :

Updated On: Mar 20, 2025
  • 5
  • 8
  • 10
  • 12
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

Triangle ABC

\(CD = \sqrt{(10+x^2)^2-(10-x^2)^2}\) 

\(2√10|x|\)

Area

\(\frac{1}{2} \times CD \times AB\) 

\(\frac{1}{2} \times 2\sqrt{10}|x| (20-2x^2)\)

\(A = \sqrt{10}|x| (10-x^2)\)

\(\frac{dA}{dx} = \sqrt{10}\frac{ |x|}{x} (10-x^2)+ \sqrt{10}|x| (-2x) = 0\)

\(⇒ 10 – x^2 = 2x^2\)

\(3x^2 = 10\)

\(x = k\)

\(3k^2 = 10\)

Hence, the correct option is (C): \(10\)

Was this answer helpful?
0
0